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Experiments have widely shown that a steady-state lamellar eutectic solidification front is destabilized on a
scale much larger than the lamellar spacing by the rejection of a dilute ternary impurity and forms two-phase
cells commonly referred to as ‘‘eutectic colonies.’’ We extend the stability analysis of Datye and Langer@V.
Datye and J. S. Langer, Phys. Rev. B24, 4155~1981!# for a binary eutectic to include the effect of a ternary
impurity. We find that the expressions for the critical onset velocity and morphological instability wavelength
are analogous to those for the classic Mullins-Sekerka instability of a monophase planar interface, albeit with
an effective surface tension that depends on the geometry of the lamellar interface and, nontrivially, on
interlamellar diffusion. A qualitatively new aspect of this instability is the occurrence of oscillatory modes due
to the interplay between the destabilizing effect of the ternary impurity and the dynamical feedback of the local
change in lamellar spacing on the front motion. In a transient regime, these modes lead to the formation of
large scale oscillatory microstructures for which there is recent experimental evidence in a transparent organic
system. Moreover, it is shown that the eutectic front dynamics on a scale larger than the lamellar spacing can
be formulated as an effective monophase interface free boundary problem with a modified Gibbs-Thomson
condition that is coupled to a slow evolution equation for the lamellar spacing. This formulation provides
additional physical insights into the nature of the instability and a simple means to calculate an approximate
stability spectrum. Finally, we investigate the influence of the ternary impurity on a short wavelength oscilla-
tory instability that is already present at off-eutectic compositions in binary eutectics.
@S1063-651X~99!18010-3#

PACS number~s!: 81.30.Fb, 64.70.Dv
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I. INTRODUCTION

The interfacial patterns that arise naturally during the
lidification of eutectic alloys have attracted widespread int
est for several decades from both fundamental and prac
viewpoints. At a fundamental level, the main theoretic
challenge lies in understanding the complex spatiotemp
dynamics of phase boundaries~solid-liquid and solid-solid!
resulting from the competition of two thermodynamica
stable solid phases growing simultaneously into a metast
liquid phase. In particular, one basic question is how to
derstand the nature of the morphological instability of t
simplest spatially periodic steady state that gives rise to
rich dynamics. From a practical viewpoint, the compos
microstructure formed by lamellae or rods of these two so
phases growing simultaneously from the melt leads to in
esting materials where the properties of two different so
can be advantageously combined. Moreover, the typical
of the microstructure pattern is about an order of magnit
PRE 601063-651X/99/60~6!/6865~25!/$15.00
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smaller than in dendritic alloys, leading to superior mecha
cal properties. Consequently, understanding the solidifica
processing conditions that yield a particular eutectic mic
structure is a goal of direct technological relevance.

Since the early investigations of eutectic alloys, it h
been remarked that besides the fine lamellae or rods, t
may exist cellular structures, termed colonies@1–9#. Their
size is typically 10 to 100 times the lamellar spacing. In F
1 we show an experimental picture of colonies obtained i
directional solidification experiment@4#. In their overall
shape, the two-phase cells are remarkably similar to
monophase~i.e., single solid phase! solidification cells
formed in standard directional solidification of a dilute b
nary alloy. This analogy is further supported by the expe
mental finding that colonies appear only when a ternary
purity, rejected by both solid phases, is present@2,8#. In
contrast, in binary eutectics the large scale solidificat
front stays planar for a range of compositions around
eutectic point. This suggests that the mechanism of the in
6865 © 1999 The American Physical Society
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6866 PRE 60MATHIS PLAPP AND ALAIN KARMA
bility is similar to the classical Mullins-Sekerka instability o
a monophase solidification front@10#. Indeed, its onset is
relatively well described quantitatively by the constitution
supercooling criterion@11#, according to which the interfac
becomes unstable when the ternary impurity concentra
gradient in the liquid ahead of the interface exceeds a crit
value set by the ratioG/vp of the temperature gradient an
the pulling speed of the sample. However, the spatiotemp
character of the linear modes associated with this instab
has never been investigated. In particular, it has rema
unclear how the Mullins-Sekerka analysis has to be modi
to account for the composite structure of the interface.
answer this question, we present in this paper a linear sta
ity analysis of a lamellar eutectic solidification front in th
presence of a ternary impurity.

It is useful to first briefly review the progress accom
plished to date on the related problem of binary eutectic
bility ~without a ternary impurity!. The approach that we
shall adopt here builds on earlier work in this context. Th
oretical developments have mostly focused on the lame
morphology in thin-film geometry, as then the problem c
be treated as quasi-two-dimensional. For a stability analy
one must first obtain a steady-state solution: a sha
preserving solidification front propagating at constant vel
ity. Studies of this problem@11–15# led to the insight that
there exists a family of steady-state solutions that can
parametrized by the lamellar spacingl. The average under

FIG. 1. Eutectic colonies in the transparent organic al
CBr4-C2Cl6 ~from Ref. @4#!, grown by a directional solidification
experiment. The growth direction is from bottom to top. The en
lope of this two-phase structure~i.e., the solidification front on a
scale much larger than the lamellar spacing! closely resembles the
typical monophase cells observed during the directional solidifi
tion of a dilute binary alloy.
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cooling DT of the solid-liquid interface with respect to th
eutectic temperature depends onl, and the curveDT versus
l presents a minimum for a certain spacinglmin . The ex-
perimentally observed spacings are usually close tolmin

@16#.
A hypothesis attributed to Cahn by Jackson and Hunt@15#

is that the lamellae always grow normal to the envelope
the solidification front. This hypothesis seems to work w
in practice when the surface energy anisotropy of the so
liquid and solid-solid phase boundaries is small enough
prevent locking of the lamellae to preferred growth dire
tions. When used to analyze heuristically the lon
wavelength stability of a eutectic front, this hypothesis lea
to the conclusion that the lamellar structure is unstable
lamellar spacings belowlmin . Under Cahn’s hypothesis, th
lamellar spacing in a concave part of the solid-liquid inte
face decreases as the interface advances. Consequently,
average spacing falls belowlmin , the local undercooling will
increase in such a way that thinner lamellae fall further
hind the front, leading finally to lamella termination. On th
other hand, for spacings larger thanlmin , the opposite oc-
curs: finer lamellae grow faster than wider ones and the c
cavity of the eutectic front is smoothed out.

This argument can determine only a lower bound forl.
To assess stability forl.lmin , a more involved analysis is
required. Several authors tried to adapt the linear stab
analysis of Mullins and Sekerka for single-phase solidific
tion @10# to eutectic systems. The eutectic problem, howev
is considerably more difficult because the basic steady-s
solution is already periodic in space. Moreover, the prese
of mobile trijunction points between three phases comp
cates enormously the stability calculation by ruling out
smooth sinusoidal perturbation. For this reason, early
tempts to average over the properties of the two solid pha
@17#, or to consider perturbations with immobile trijunction
@18–20#, did not produce consistent results~see Ref.@21# for
a more detailed discussion!.

The most complete analytical stability analysis of a eut
tic interface has been performed by Datye and Langer~DL!
@22#. Their calculation is a perturbation analysis of th
Jackson-Hunt~JH! @15# steady-state solution, using as bas
variables the coordinates of the trijunction points both pa
lel and perpendicular to the interface. They first calculate
approximate solution to the diffusion equation for a pe
turbed lamellar interface. The assumption of local equil
rium at the solid-liquid interface and the use of Cahn’s h
pothesis then allow one to obtain an eigenvalue problem
the linear growth modes and to extract the stability spectr
of the interface. In the limit where the wavelength of th
perturbation is large compared to the lamellar spacing~re-
ferred to hereafter as the ‘‘long-wavelength limit’’!, a sim-
plified calculation confirms JH’s conclusion that lamell
spacings belowlmin are unstable@23#. In addition, the DL
analysis predicted the occurrence of an oscillatory instab
with a wavelength twice the lamellar spacing for sufficien
off-eutectic compositions (2l-O instability!.

The existence of this short-wavelength instability w
later confirmed by numerical simulations of eutectic fro
dynamics using a random walk algorithm@24# and, more
recently, a boundary integral approach@21,25#. The latter
study pinpointed the existence of additional sho
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wavelength instabilities, one of which~tilt bifurcation! was
previously known@24,26#, and made specific quantitativ
predictions for the CBr4-C2Cl6 organic system that hav
been validated by a detailed comparison with experime
@27,28#. As an additional result, which is relevant for th
present analysis, the boundary integral study revealed
the stability predictions of the DL analysis are quite accur
for lamellar spacings close tolmin , and only become inac
curate for larger spacings where the JH description of
diffusion field breaks down.

In summary, according to both theory and experimen
planar lamellar eutectic front in a binary alloy is complete
stable for compositions sufficiently close to the eutectic co
position, and for lamellar spacings nearlmin . To understand
the instability leading to colony formation, one must the
fore include a ternary impurity. To date, few theoretical stu
ies of ternary systems have been available. Rinaldi, Sh
and Flemings derived a generalized constitutional superc
ing criterion for ternary systems and used it to interpret th
experiments@9#. McCartney, Hunt, and Jordan adapted t
JH steady-state analysis to include impurities. They in
preted the formation of colonies as the result of a Mullin
Sekerka instability driven by the ternary impurity@29#, but
did not carry out a detailed stability analysis.

In this paper, we extend Datye and Langer’s linear sta
ity approach, based on a Jackson-Hunt approximation of
diffusion field, to include the effect of a ternary impurity. F
the reasons mentioned above, we expect this approac
yield relatively accurate predictions for spacings close
lmin , which is typically the dynamically selected range
interest in experiments. We obtain the full linear stabil
spectrum of the steady-state lamellar eutectic front grow
in two dimensions. Our final result is quite complicated, b
can be substantially simplified for a model alloy with a sy
metric phase diagram, solidified at its eutectic compositi
From the study of this special case, we can identify all i
portant factors that determine the stability of the front.
particular, we find that the interlamellar eutectic diffusio
field gives a stabilizing contribution with a functional form
similar to the usual capillary term. Thus, this contributi
leads effectively to a ‘‘renormalization’’ of the capillar
length. Using this insight, we are able to reformulate
stability problem by treating the large scale dynamics of
eutectic front as an ‘‘effective monophase interface,’’ as s
gested by Fig. 1, with a Gibbs-Thomson condition that
coupled to an equation of motion for the local lamellar sp
ing. A similar type of approach has been used previously
analyze the long-wavelength modes of cellular arrays du
directional solidification of dilute binary alloys@30#. More
recent numerical work, however, has shown that the mo
that limit the range of stable cell spacings at low velocity a
oscillatory and nonoscillatory instabilities with a waveleng
equal to twice the cell spacing@31# that have been observe
in experiments@32#. In contrast, here, no short-waveleng
instabilities are present near the eutectic composition fol
close to lmin . Therefore, the effective interface approa
provides an accurate description of the interface dynamic
the limit of perturbation wavelengths much larger than
lamellar spacing. Moreover, it can be extended to deriv
simplified expression for the stability spectrum by incorp
rating phenomenologically the effect of surface tension. T
ts
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formula is found to predict all important features of the i
stability and to yield reasonably good quantitative pred
tions.

Our calculation both confirms the expectations based
the analogy between a two-phase eutectic front in the p
ence of a ternary impurity and a monophase front, and at
same time yields a surprising result. Namely, we find that
expressions for the onset velocity and wavelength of the
stability are analogous to those for a monophase front wi
surface tension renormalized by the geometry of the lame
front and interlamellar diffusion. Thus, as far as these qu
tities are concerned, the lamellar structure leads to quan
tive differences, but no new qualitative features of the ins
bility. The new ingredient, however, which could not ha
been expected on the basis of the analogy with a monop
front, is that the instability is oscillatory. The origin of thi
difference is due to the additional degrees of freedom as
ciated with the underlying lamellar structure of the interfac
According to Cahn’s hypothesis, the change in the lo
lamellar spacing is determined by the shape of the front. T
spacing, in turn, is related to the local interface temperatu
As a consequence of the interplay between this effect and
instability driven by the impurities, long-wavelength pertu
bations may oscillate during growth or form traveling wave
There indeed seems to be recent experimental evidence
such large scale oscillatory behavior near the onset of col
formation in a transparent organic model alloy@33#.

We also investigate the influence of the ternary impur
on the short-wavelength (2l-O! oscillatory instability that is
already present in a binary eutectic. The main result is t
this instability is enhanced by the impurity boundary lay
which leads to a reduced composition range for stable lam
lar growth even below constitutional supercooling.

The structure of this paper is as follows. In Sec. II, w
introduce the basic sharp-interface equations. We then s
marize in Sec. III the Jackson-Hunt approach and apply i
calculate the steady-state solution in the presence of a ter
impurity. In Sec. IV, we review the principles of the D
approach and calculate the additional terms arising from
presence of an impurity. Section V is devoted to a detai
discussion of the stability spectrum at the eutectic comp
tion in a model phase diagram that is symmetric about
composition. In Sec. VI, we reformulate the stability pro
lem in terms of an effective interface approach and derive
approximate expression for the stability spectrum for an
bitrary phase diagram and material parameters. In Sec.
we discuss how the off-eutectic short-wavelength oscillat
instability is affected by the ternary impurity. Finally, w
summarize our main results in Sec. VIII.

II. BASIC EQUATIONS

We study the solidification of a binary eutectic alloy co
taining a small amount of ternary impurity. Letc denote the
concentration~in molecules per unit volume! of one of the
constituents of the binary eutectic, andc̃ the concentration of
the ternary impurity. As we restrict our attention to sm
impurity concentrations, we shall assume that these
quantities can be treated as independent variables. In o
words, we assume that the phase diagram of the binary
tectic is only slightly altered by the presence of the impuri
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6868 PRE 60MATHIS PLAPP AND ALAIN KARMA
The two solid phases are denoted bya andb; ca andcb are
the concentrations limiting the eutectic plateau in the bin
phase diagram,Dc5cb2ca , andcE is the eutectic compo
sition.

For coupled eutectic growth, the temperature of the lam
lar front is close to the eutectic temperature, and the com
sition on the liquid side of the solid-liquid interface is clo
to the eutectic point@15#. This allows us to introduce two
further simplifications. First, we may approximate the so
dus and liquidus surfaces in the ternary phase diagram
planes around the eutectic point. We denote byms and
m̃s (s5a,b) the magnitude of the liquidus slopes along t
c- and c̃-axis, respectively. Second, we will assume thatca
andcb are independent of temperature and impurity conc
tration. As already argued by DL, this should only sligh
affect the final results, because in the temperature range
plored by the front the relative variations of the concent
tion jumps across the interfaces are negligible. On the o
hand, our calculations are considerably simplified, as we
relate the volume fractionh of the a solid to the composi-
tion of the melt far ahead of the interface,c` , via the rela-
tion

c`5cah1cb~12h!, ~1!

independently of the concentration of the ternary impur
and the interface temperature. For the impurity, we will wo
in a dilute alloy approximation where the impurity conce
trations on the solid and liquid sides of the interface
related in equilibrium by

c̃s5 k̃sc̃L , s5a,b. ~2!

The resulting phase diagram in the space (c,c̃,T) is sketched
in Fig. 2. The line of intersection of the two liquidus surfac

FIG. 2. Phase diagram of an idealized ternary eutectic alloy.~a!

Binary eutectic phase diagram (c̃50). Tm is the melting tempera-
ture of the pure phases,TE the eutectic temperature, andcE the
eutectic composition.~b! Cut through the ternary diagram along th
eutectic valley (c5cE). ~c! Liquidus and solidus surfaces in th

space (c,c̃,T). The dashed line is the projection of the eutec
valley on the solidus surface. The liquidus surfaces have metas
extensions beyond the eutectic valley~not shown!. ~d! Coexistence

curves for a fixed temperature belowTE in the (c,c̃) plane.
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is usually termed theeutectic valleyor eutectic trough.
Along this line,c, c̃, andT are related by the equations

c2cE5
m̃b2m̃a

ma1mb
c̃, ~3!

T2TE5M̃ c̃, ~4!

M̃5
m̃amb1mam̃b

ma1mb
. ~5!

Equation~3! defines a monovariant line in the ternary pha
diagram where, except for the special casem̃a5m̃b , the
eutectic composition is shifted with respect to the bina
eutectic point in the presence of a ternary impurity.M̃ is the
liquidus slope along the eutectic valley. A liquid satisfyin
Eqs.~3! and~4! can be in simultaneous equilibrium with tw
solids.

In a typical directional solidification experiment, th
sample is pulled in a temperature gradientG with a constant
pulling speedvp . We assume that heat diffusion is muc
faster than chemical diffusion and that the thermal cond
tivities of solid and liquid are of comparable magnitude. U
der this set of assumptions~commonly referred to as the
frozen temperature approximation!, the temperature is given
by

T~z!5TE1Gz, ~6!

where we have chosen the origin of thez axis at the eutectic
temperature.

In the absence of convection, the growth of the solid
limited by chemical diffusion of the constituents. We assu
zero diffusivity in the solid~one-sided model!. In the liquid,
the diffusion equations in the laboratory frame~moving with
velocity vp with respect to the sample! are

1

D

]c

]t
5

2

l
]zc1¹W 2c, ~7a!

1

D̃

] c̃

]t
5

2

l̃
]zc̃1¹W 2c̃, ~7b!

with the diffusion lengthsl 52D/vp and l̃ 52D̃/vp , D and
D̃ being the diffusivities of the eutectic components and
ternary impurity, respectively.

For lamellar eutectic growth in thin-film geometry, th
problem is essentially two-dimensional. Let the position
the solid-liquid interface be described by the curvez(x,t).
During the phase transformation, impurities and the min
component of the growing solid are rejected into the liqu
The condition of mass conservation implies that at the in
face

2D]nc5vn@c~x,z!2ca# ~aL-interface!, ~8a!

2D]nc5vn@c~x,z!2cb# ~bL-interface!, ~8b!

2D̃]nc̃5vn~12 k̃a!c̃~x,z! ~aL-interface!, ~8c!

2D̃]nc̃5vn~12 k̃b!c̃~x,z! ~bL-interface!, ~8d!

ble
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wherevn and]n denote the normal velocity of the interfac
and the derivative normal to the interface, respectively.

We are interested in a regime of relatively low solidific
tion velocity where the solid-liquid interface can be cons
ered to be in local equilibrium, in which case the temperat
and concentration fields at the interface are related by
Gibbs-Thomson conditions

T5TE2ma~cL2cE!2m̃ac̃L2GaK@z# ~aL-interface!,
~9a!

T5TE1mb~cL2cE!2m̃bc̃L2GbK@z# ~bL-interface!.
~9b!

Here,K@z# is the local interface curvature, and

Gs5TEgsL /Ls , s5a,b, ~10!

are the Gibbs-Thomson constants, withgsL andLs denoting,
respectively, the liquid-solid surface tensions and the la
heats of the two solids at the eutectic point.

Finally, local equilibrium also implies that at the trijunc
tion points, where the three phases are in contact, the an
between the three interfaces are fixed by the balance of
face tension forces, which for isotropic interfaces yields
two conditions

gaL sinua1gbL sinub5gab , ~11a!

gaL cosua5gbL cosub , ~11b!

where the definition of the anglesua andub is illustrated in
Fig. 3.

III. STEADY-STATE SOLUTION

For a binary eutectic, the steady-state problem has b
treated by Jackson and Hunt@15#. Their method has bee
extended to ternary systems by McCartney, Hunt, and Jo
@29#. We need the steady-state solution as the starting p
for our stability analysis. We will only summarize here th
essential steps of the calculation; more details can be fo
in Refs.@15,22,29#.

A typical configuration for a lamellar eutectic growing
constant solidification speedvp is sketched in Fig. 3. Alter-
nating lamellae of thea and b phase are regularly space
The width of one lamella pair,l, is usually of the order of
10 mm. We must find the interface shape for which the d

FIG. 3. Sketch of a steady-state array of lamellae growing p
allel to thez axis. The lamella pairs are numbered by the integej,

h is the volume fraction ofa-phase, andz̄ is thez coordinate of the
trijunction points.
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fusion equations and the Gibbs-Thomson conditions at
interface are both satisfied. The JH approximation starts
solving the diffusion problem for a flat interface~consisting
of lamellae withua5ub50). This can be achieved by ex
panding the diffusion field in Fourier modes along thex axis:

c~x,z!5c`1 (
n52`

`

Bn exp@ iqnx2q̄n~z2 z̄!#, ~12!

with qn52pn/l, and z̄ the z coordinate of the trijunction
points. The constantsq̄n are obtained by substituting th
above sum into the diffusion equation. Since time derivativ
are zero in steady state, this yields, at once,

q̄n51/l 1A1/l 21qn
2. ~13!

Inserting the expansion~12! into the mass conservation con
dition allows us to determine all Fourier coefficients exce
for B0. The average undercooling for each lamella can th
be calculated using the Gibbs-Thomson conditions. Fina
the condition that the two phases must grow at equal un
cooling determinesB0 and the average undercoolingDT of
the solid-liquid interface as a function ofl andh.

For a eutectic with a ternary impurity, we must in additio
treat the diffusion of the ternary impurity in the liquid phas
For this purpose, we use the same Fourier expansion
above,

c̃~x,z!5 c̃`1 (
n52`

`

B̃n exp@ iqnx2q̃n~z2 z̄!#, ~14!

wherec̃` is the impurity concentration far from the interfac
and the constantsq̃n are equivalent toq̄n with l replaced by
l̃ . This expansion is inserted into the condition for impur
conservation at the interface. To extract an equation for
Fourier coefficientsB̃n , both sides of the equation are the
multiplied by exp(2iqmx) and integrated overx from 0 tol.
The result for the coefficientB̃0, which gives the magnitude
of the overall diffusion boundary layer, can be written in t
form

B̃05 c̃`S 1

kE
21D , ~15!

with an effective partition coefficient

kE5h k̃a1~12h!k̃b . ~16!

For nÞ0, we obtain

q̃nB̃n5
2

l̃
S 12

k̃a1 k̃b

2
D B̃n1

2

l̃
~ k̃b2 k̃a!H c̃`

e2 iqnhl21

2 ilqn

1~h2 1
2 !B̃n1 (

mÞn

ei (qn2qm)hl21

il~qn2qm!
B̃mJ . ~17!

We are interested in a growth regime where the diffus
length is much larger that the lamellar spacing, and the´-
clet number, Pe5l/ l !1. Consequently, fornÞ0, we have

r-
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6870 PRE 60MATHIS PLAPP AND ALAIN KARMA
q̃n@1/l̃ , and all terms containing the coefficientsB̃n on the
right-hand side~RHS! of Eq. ~17! can be neglected, which
yields

B̃n5
4c̃`~ k̃b2 k̃a!e2 iqnhl/2 sin~qnhl/2!

lqnq̃nl̃
. ~18!

Note that, if we want to go beyond this approximation, t
problem becomes considerably more involved, because
all the Fourier coefficients are coupled.

We proceed now as JH by calculating the average im
rity concentration in front of each phase, that is, by evalu
ing

^c̃&a5
1

hlE0

hl

c̃~x,z!dx, ~19a!

^ c̃&b5
1

~12h!l
E

hl

l

c̃~x,z!dx ~19b!

at z5 z̄. The results are

^c̃&a5
c̃`

kE
1

2l

l̃ h
P~h!c̃`~ k̃b2 k̃a!, ~20a!

^c̃&b5
c̃`

kE
2

2l

l̃ ~12h!
P~h!c̃`~ k̃b2 k̃a!, ~20b!

with

P~h!5 (
n51

`
1

~pn!3
sin2~phn!. ~21!

Averaging the Gibbs-Thomson condition over individu
lamellae, we obtain the mean undercooling of the so
liquid interface:

^DT&a5ma~^c&a2cE!1m̃a^c̃&a1Ga^K&a , ~22a!

^DT&b52mb~^c&b2cE!1m̃b^c̃&b1Gb^K&b , ~22b!

where the average values^DT&s , ^c&s , and^K&s (s5a,b)
are defined by expressions analogous to Eqs.~19! for ^c̃&s .
The averages for the composition,^c&s , and for the curva-
tures,^K&s , are@22#

^c&a2cE5c`1B01
2lDc

lh
P~h!, ~23a!

^c&b2cE5c`1B02
2lDc

l ~12h!
P~h!, ~23b!

^K&a5
2

hl
sinua , ~24a!

^K&b5
2

~12h!l
sinub . ~24b!
en

-
t-

l
-

The last step is to apply the condition that neighbori
lamellae should grow at equal undercooling,^DT&a
5^DT&b . This determines the only degree of freedom left
the problem: the eutectic boundary layerB0. The solution is

B052~c`2cE!1
c̃`

kE

m̃b2m̃a

ma1mb
1

2lP~h!Dc

ma1mb

3F1

l S mb

12h
2

ma

h D2
1

l̃
S m̃a

h
1

m̃b

12h
D c̃`

Dc
~ k̃b2 k̃a!G .

~25!

There are two terms that are not present in the binary eu
tic. The second term on the RHS of Eq.~25! gives, according
to Eq. ~3!, the shift of the eutectic composition correspon
ing to an impurity concentrationc̃` /kE . It is remarkable
that, even for a system that started from an initial state w
three-phase equilibrium, a eutectic boundary layer must
velop in order that the composition condition for three-pha
equilibrium at the trijunction points can be met. The seco
new term is the last term in brackets on the RHS of Eq.~25!,
involving the difference of the partition coefficients. Th
term is due to the unequal rejection of impurities in the l
uid.

The interfacial undercooling as a function of the lamel
spacing can be written in a form very similar to the JH res
for a simple binary eutectic:

DT5M̃
c̃`

kE
1

1

2
DTminS l

lmin
1

lmin

l D . ~26!

The first term, according to Eq.~4!, gives the undercooling
of the point in the eutectic valley corresponding to an imp
rity concentrationc̃` /kE . The minimum undercoolingDTmin
and the corresponding spacinglmin are

DTmin5
4Dc

h~12h!S mamb

ma1mb
DAf ~h!p~h,c̃`!, ~27!

lmin5Af ~h!/p~h,c̃`!, ~28!

with

f ~h!5
~12h!Ga sinua

maDc
1

hGb sinub

mbDc
, ~29!

p~h,c̃`!5
P~h!

l
1

P~h!

l̃

c̃`

Dc
~ k̃b2 k̃a!

3F ~12h!
m̃a

ma
2h

m̃b

mb
G . ~30!

Note that, as in a binary eutectic, we haveDTmin;Avp and
lmin;1/Avp. In the special casek̃a5 k̃b , we recover the
classic JH result. The twol-dependent terms on the RHS o
Eq. ~26! represent the effects of diffusion and surface te
sion. For finer lamellae, the diffusion between adjac
lamellae is faster, and the undercooling due to the conc
tration term in the Gibbs-Thomson relation is smaller. Th
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gives the term proportional tol. On the other hand, for fine
lamellae the average curvature is higher due to the c
straints at the trijunction points, leading to the term prop
tional to l21.

For our subsequent stability analysis, we will now sim
plify the problem. The main effect of the impurities, reject
by both solid phases, is the buildup of the impurity bound
layer of amplitudeB̃0. The diffusion of impurities between
neighboring lamellae leads to corrections inlmin andDTmin .
In the dilute limit, however, wherec̃`!Dc, these corrections
are small. In addition, the partition coefficients for terna
impurities are often close to zero, and we havek̃a2 k̃b!1.
Thus it seems well justified to make the approximati
p(h,c̃`)'P(h)/ l in Eq. ~30! and to drop the term involving
the difference of the partition coefficients in Eq.~25!. This
means that we neglect the interlamellar impurity diffusi
modes,B̃n50 for nÞ0, which is equivalent to the assump
tion of equal impurity partition coefficients,k̃a5 k̃b5kE .
For two very different impurity partition coefficients,
might be necessary to go beyond this approximation an
include the interlamellar impurity diffusion.

We will also assume equal impurity liquidus slopesm̃a

andm̃b for most of what follows. Then, the eutectic comp
sition and the magnitude of the eutectic boundary layer,
scribed by the coefficientB0, do not depend on the impurit
concentration. We will briefly comment on the general ca
at the end of Sec. VI.

IV. STABILITY ANALYSIS

The DL method is a perturbation analysis around the
steady-state solution. The fundamental variables in this
proach are the coordinates of the trijunction points, or m
precisely, the departure of these coordinates from th
steady-state values. As illustrated in Fig. 4, the coordina
of the trijunction points of thej th lamella pair are written as

xj
a5 j l1yj

a~ t ! xj
b5~ j 1h!l1yj

b~ t !, ~31!

zj
a5 z̄1j j

a~ t ! zj
b5 z̄1j j

b~ t !. ~32!

We assume the system to consist of a total number oN
lamella pairs, and use periodic boundary conditions. For c
venience, we define a dimensionless eutectic concentra
field by

FIG. 4. Sketch of a perturbed lamellar interface, showing
displacementsyj

a , yj
b , j j

a , andj j
b .
n-
-

-

y

to

e-

e

H
p-
e
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n-
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u5
c2cE

Dc
, ~33!

and a dimensionless impurity concentration field

ũ5
c̃2 c̃`

D c̃
, ~34!

with D c̃5 c̃`(1/kE21).
Let us outline the strategy of the DL calculation. For

slowly evolving, slightly perturbed interface, the Gibb
Thomson condition for local equilibrium remains satisfie
The deformation of the front modifies the local curvatur
and concentrations. The perturbed diffusion fields can be
culated using the mass conservation conditions. For sm
displacements, all resulting expressions are linearized inj j

s

andyj
s . To close the set of equations, DL use Cahn’s hypo

esis, which gives additional relations between thej ’s and the
y’s. Inserting all these expressions into the Gibbs-Thom
condition allows one to determine the stability spectrum
the interface.

The new element here is the ternary impurity diffusi
field. To obtain the modifications it generates in the stabi
spectrum, we have to introduce the procedure in more de
As in the JH calculation, a complete solution of the fr
boundary problem is out of reach, and we use quantities
are averaged over individual lamellae. The average un
cooling of a lamella is written as

DTj
s~ t !5DT1dTj

s~ t ! ~s5a,b!, ~35!

with DT, the steady-state value, given by Eq.~26!. To ex-
press thedTj

s(t)’s, we have to calculate the deviations
curvature and concentrations from their steady-state val
that is,

d^K& j
a~ t !5

1

xj
b2xj

aE
xj

a

xj
b

K@z~x,t !#dx2^K&a , ~36a!

d^K& j
b~ t !5

1

xj 11
a 2xj

bExj
b

xj 11
a

K@z~x,t !#dx2^K&b , ~36b!

d^u& j
a~ t !5

1

xj
b2xj

aE
xj

a

xj
b

u„x,z~x,t !,t…dx2^u&a , ~37a!

d^u& j
b~ t !5

1

xj 11
a 2xj

bExj
b

xj 11
a

u„x,z~x,t !,t…dx2^u&b , ~37b!

with the equivalent quantities for the ternary impurity fie
being obtained by replacingu by ũ in the last two equations
above. The steady-state values are obtained from Eqs.~20!
and ~23! using the changes of variables~33! and ~34!. Fur-
thermore, we define the averagez position of a lamella by

e
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^j& j
a5

1

2
~j j

a1j j
b!, ~38a!

^j& j
b5

1

2
~j j 11

a 1j j
b!. ~38b!

In terms of these local averages, the linearized Gib
Thomson conditions read

dTj
a~ t !52G^j& j

a~ t !5mad^u& j
a~ t !1m̃ad^ũ& j

a~ t !

1Gad^K& j
a~ t !, ~39a!

dTj
b~ t !52G^j& j

b~ t !52mbd^u& j
b~ t !1m̃bd^ũ& j

b~ t !

1Gbd^K& j
b~ t !. ~39b!

The next step is to express the averages in the two equa
above in terms of the displacementsj j

s andyj
s . For the cur-

vature terms, the procedure is straightforward, but for
diffusion fields one needs to introduce a piecewise lin
representation of the interface shape, as will be describe
more detail below@see Eq.~52!#. Following this step, Eqs
~39! become a system of 2N linear equations for 4N vari-
ables and their time derivatives. To complete this system,
must specify how the trijunction points react to deformatio
of the growth front. Following DL, we will use Cahn’s hy
pothesis and assume that the trijunctions always grow
pendicular to the eutectic solidification front, which yield
the conditions

ẏ j
a52~j j

b2j j 21
b !vp /l, ~40a!

ẏ j
b52~j j 11

a 2j j
a!vp /l, ~40b!

where the dot denotes the time derivative.
We now transform the problem into an eigenvalue eq

tion by analyzing it in terms of time-dependent Four
modes. We write

j j
s5Xk

s exp~ ikl j 1vt ! ~s5a,b!, ~41a!

yj
s5Yk

s exp~ ikl j 1vt ! ~s5a,b!, ~41b!

where the allowed wave vectorsk are integer multiples of
2p/Nl and lie in the interval@2p/l,p/l#. In the limit of
an infinite number of lamellae,N→`, we recover a continu-
ous spectrum. The growth constraints~40! give then imme-
diately

vYk
a52

2ivp

l
e2 ikl/2 sin~kl/2!Xk

b , ~42a!

vYk
b52

2ivp

l
eikl/2 sin~kl/2!Xk

a . ~42b!

This allows us to eliminate the coefficientsYk
a andYk

b , and
the only unknowns left in the problem areXk

a , Xk
b , andv. It

is useful to write each of the terms appearing in the Gib
Thomson condition in the compact forms
s-

ns

e
r
in

e
s

r-

-

-

G^j& j
s~ t !5eikl j 1vt (

s85a,b

Gs,s8~k,v!Xk
s8 , ~43!

d^K& j
s~ t !5eikl j 1vt (

s85a,b

K s,s8~k,v!Xk
s8 , ~44!

d^u& j
s~ t !5eikl j 1vt (

s85a,b

Us,s8~k,v!Xk
s8 , ~45!

d^ũ& j
s~ t !5eikl j 1vt (

s85a,b

Ũs,s8~k,v!Xk
s8 . ~46!

Then, the conditions~39! can be written as an eigenvalu
equation,

(
s85a,b

As,s8Xk
s850, ~47!

where the matrixA is given by

A5G1S Ga 0

0 Gb
DK1S maDc 0

0 2mbDcDU

1S m̃aD c̃ 0

0 m̃bD c̃
D Ũ. ~48!

The first three terms on the RHS of Eq.~48! are identical to
those calculated by DL, whereas the last term is due to
presence of the ternary impurity. For a given wave numbek,
Eq. ~47! is fulfilled only for special values ofv. The solv-
ability condition,

detA50, ~49!

gives the dispersion relationsv(k).
The core of the problem is the calculation of the matric

appearing in Eq.~48!. The first two,G andK , are relatively
easy~see Ref.@22# and Appendix A!. The most difficult is
the matrix U. We start by writing the perturbed diffusio
field as

u~x,z,t !5u0~x,z!1du~x,z,t !, ~50!

whereu0(x,z) is the steady-state solution. Next,du is ex-
panded in Fourier modes; this time with the periodicity
the whole system, i.e., with wave numbersp52pn/Nl:

du~x,z,t !5(
p

bp exp@ ipx2q̄p~z2 z̄!1vt#. ~51!

The p’s, unlike thek’s, range from2` to `, because the
diffusion field is continuous. To simplify our calculation
we use the quasistationary approximation for the diffus
equation; i.e., we drop the time derivative in Eq.~7a!. Physi-
cally, this means that we assume that the diffusion field
justs instantaneously to any change in the interface confi
ration. For a perturbation such as that given by Eq.~51!, this
is justified if uvu!Dp2 and uvu!Dp/ l , conditions that will
be checkeda posterioriat the end of Sec. V D. In the rang
of wavelength of interest here, i.e. forl,2p/p, l , we find
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that these conditions are generally well satisfied. Within t
approximation, the constantsq̄p are given by the analog o
Eq. ~13!.

To obtain the Fourier coefficientsbp , we proceed as in
the steady-state calculation and insert the expansion in
mass conservation condition. To make the problem tracta
the actual interface shapez(x,t) is replaced by the piecewis
constant function

z~x,t !2 z̄5H ^j& j
a , xj

a,x,xj
b ,

^j& j
b , xj

b,x,xj 11
a .

~52!

One needs to be careful because the gradients of the ste
state concentration field diverge at the trijunction points. D
tails can be found in DL’s article. Finally, the result is in
serted in Eqs.~37!. There are two types of contributions t
linear order inj j

s and yj
s : the steady-state diffusion field i

evaluated at the position of the perturbed interface, and
perturbed diffusion field is taken at the location of t
steady-state interface. These different terms, containing s
over the steady-state interlamellar diffusion modes, lead
quite complicated expressions, summarized in Appendix

The calculation ofŨ is somewhat easier because, with t
assumption of equal solute partition coefficients, the stea
state impurity diffusion field is translationally invariant alon
x, and hence the horizontal displacementsyj

s drop out of the
calculation. It would be possible to include the interlamel
impurity diffusion in the expression forŨ by following the
lines of the DL calculation forU. We expect, however, a
argued in the preceding section, that this would only lead
minor corrections.

The perturbed impurity diffusion field is written as

ũ~x,z,t !5ũ0~z!1dũ~x,z,t ! ~53!

and expanded in Fourier modes,

dũ~x,z,t !5(
p

b̃p exp@ ipx2q̃p~z2 z̄!1vt#. ~54!

To calculate the constantsq̃p , we use the quasistationar
approximation of the impurity diffusion equation. In terms
the dimensionless impurity fieldũ, the continuity equation a
the interface takes the form

2D̃
]ũ

]z
U

z5z

5~vp1 ż !@~12kE!ũ1kE#. ~55!

We want to keep only terms that are linear in the displa
mentsj j

s or their time derivatives. Such terms come fro
several sources: the time derivative ofz, the correctionsdu
in the diffusion field and its gradient, and from evaluating t
steady-state diffusion field at the new interface posit
z(x,t). The equation of order 1 in the displacements b
comes
s

he
le,

dy-
-

e

s
to
.

y-

r

o

-

n
-

2D̃
]2ũ0

]z2 U
z5 z̄

~z2 z̄!2D̃
]dũ

]z
U

z5 z̄

5 ż@~12kE!ũ0~x,z̄!1kE#1vp~12kE!
]ũ0

]z
U

z5 z̄

3~z2 z̄!1vp~12kE!dũ~x,z̄,t !. ~56!

We now insert the Fourier expansion~54! in the above equa-
tion, multiply both sides by exp(2ip8x)/Nl, and integrate
over x from 0 to Nl. With ũ0(x,z)5exp„22(z2 z̄)/ l̃ …, this
leads to

b̃pevtF q̃p2
2

l̃
~12kE!G5

4kE

l̃ 2

1

NlE0

Nl

e2 ipxz~x,t !dx

1
1

D̃

1

NlE0

Nl

e2 ipxż~x,t !dx. ~57!

To perform the integrals overx, we use the piecewise con
stant expression, Eq.~52!, for z(x,t). As z2 z̄ is already of
orderj, we can neglect they’s in the integration boundaries
For j j

s given by a Fourier mode of wave numberk according
to Eqs.~41!, we obtain

b̃p5F q̃p2
2

l̃
~12kE!G21S 4kE

l̃ 2
1

v

D̃
D e2 iphl/2

pl

3Fsin
phl

2
~X̃p

a1X̃p
b!

1sin
p~12h!l

2
~eipl/2X̃p

a1e2 ipl/2X̃p
b!G , ~58!

where

X̃p
s5

1

N (
j 50

N21

e2 ipl j 2vtj j
s5(

n
dp,k12pn/lXk

s ~s5a,b!.

~59!

Note that, even if we start with a set ofj ’s given by a single
Fourier mode of wave numberk, the use of the piecewise
constant interface shape of Eq.~52! induces perturbations in
the diffusion field at all wave numbers shifted with respect
k by a multiple of 2p/l. This effect is unavoidable if we
want to replace the full free boundary problem by equatio
for a discrete set of variables.

The next step is the calculation of the average concen
tions in front of each lamella:

d^ũ& j
a~ t !5

1

hl E
j l

( j 1h)lS ]ũ0

]z
U

z5 z̄

^j& j
a1dũ~x,z̄,t !D dx

~60a!

d^ũ& j
b~ t !5

1

~12h!l

3E
( j 1h)l

( j 11)lS ]ũ0

]z
U

z5 z̄

^j& j
b1dũ~x,z̄,t !D dx.

~60b!
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6874 PRE 60MATHIS PLAPP AND ALAIN KARMA
The first term inside each integral is due to the displacem
of the interface in the steady-state diffusion field, and
second arises from the perturbed diffusion field evaluate
the steady-state interface position. The final result for
matrix Ũ is

Ũa,a52
1

l̃
1

1

h l̃
S 2kEl

l̃
1

vl l̃

2D̃
D @S̃1~k,h!1S̃2* ~k,h!#,

~61a!

Ũa,b5Ũa,a* , ~61b!

Ũb,b52
1

l̃
1

1

~12h! l̃
S 2kEl

l̃
1

vl l̃

2D̃
D @S̃1~k,12h!

1S̃2* ~k,12h!#, ~61c!

Ũb,a5eiklŨb,b* , ~61d!

whereŨa,a* denotes the expression obtained fromŨa,a by
complex conjugation of all quantities except forv ~for v
real, this is the usual complex conjugation!, and we have
defined

k5kl/2p, ~62!

r 5 l / l̃ 5D/D̃, ~63!

r̃n~k!5Ar 2Pe214p2~n1k!22r Pe12rPekE , ~64!

S̃1~k,h!5 (
n52`

`
sin2@ph~n1k!#

p2~n1k!2r̃n~k!
, ~65!

S̃2~k,h!5 (
n52`

`

e2 ip(n1k)

3
sin@ph~n1k!#sin@p~12h!~n1k!#

p2~n1k!2r̃n~k!
. ~66!

These notations have been chosen in analogy to som
DL’s results ~see Appendix A!. The ratio r of the eutectic
and impurity diffusion lengths is usually close to 1, andk is
the dimensionless wave number. For small Pe´clet numbers,
and perturbation wavelengths much larger than the lame
spacing~k!1!, the sumsS̃1 and S̃2 are dominated by the
term with n50. In this limit, we can neglect all the othe
terms in the sums, which corresponds to keeping only
Fourier coefficientb̃p with p5k, and hence to a single-mod
approximation of the perturbed impurity diffusion field
Whenk is larger, however, and in particular near the ‘‘Br
louin zone’’ boundary,k50.5, we have to consider the fu
sums. To obtain the stability spectra, we must now comb
this result with DL’s calculations for the other matrices a
solve the characteristic equation forv.
nt
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V. SYMMETRIC PHASE DIAGRAM AT EUTECTIC
COMPOSITION

A. Stability spectrum

In general, the characteristic equation of the stabi
spectrum is a polynomial of degree four inv with real co-
efficients. The solutions could be obtained algebraically,
this method leads to complicated expressions that are d
cult to interpret. For this reason, we will restrict our attenti
in this section to the special case of an alloy of eutec
composition in a model system where the phase diagram
symmetrical about the eutectic composition. In this case,
characteristic equation can be factored into two quadr
equations, thus greatly simplifying the interpretation. As
shall see when we treat the general case in Sec. VI, all qu
tative features of the instability are already contained in t
special case.

There are general relations between the elements of
matrix A, due to the existence of two planes of mirror sym
metry in the steady state, one in the middle of each type
lamella ~a or b!. Hence we can change the sign ofk and
relabel the trijunction points without affecting the final r
sult. This leads to the relations

Aa,b5Aa,a* , ~67a!

Ab,a5eiklAb,b* . ~67b!

Here, an asterisk again denotes complex conjugation o
quantities exceptv. If we consider a model eutectic with
completely symmetric phase diagram, i.e.,ma5mb5m,
m̃a5m̃b5m̃, Ga5Gb5G, ua5ub5u, andub52ua51/2,
at its eutectic composition,h51/2, we have in addition
Aa,a5Ab,b. The solvability condition, detA50, can then be
factored into two equations,

Re~e2 ikl/4Aa,a!50 and Im~e2 ikl/4Aa,a!50, ~68!

both of them quadratic inv.
To proceed, we will rewrite the equations in a dimensio

less form. For the sake of subsequent generalization, we
give expressions for the parameters that are valid for
phase diagram. We define

M5
mamb

~ma1mb!/2
, ~69!

V5vl/vp , ~70!

g5
Gl

MDc
5

2DG

vpMDc
, ~71!

w5
m̃D c̃

MDc
, ~72!
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L5l/lmin . ~73!

Here,M is a mean liquidus slope~for the symmetric phase
diagram,M5m); 1/ReV is the distance along thez direction
that the interface needs to travel~in units of lamellar spacing!
for the amplitude of the perturbation to grow by a factor ofe;
and 2p/Im V is the length traveled by the interface durin
one oscillation cycle. The parameterw is the ratio of the two
freezing ranges and is proportional to the impurity conc
tration sinceD c̃5(1/kE21)c̃` .

It may be useful to comment on typical experimental v
ues of the dimensionless parameters. The best studied sy
in this context is the organic eutectic CBr4-C2Cl6 used origi-
nally by Hunt and Jackson@4#. This system contains natu
rally residual gas that acts as an impurity, leading to colo
formation. For this system, Akamatsu and Faivre@34# have
estimatedw to be of order 0.1, with a distribution coefficien
kE'0.02. The Pe´clet number Pe is typically between 0.0
and 0.1 in the low-velocity regime used to investigate colo
formation.

After multiplication by lV/(MDc), the first of Eqs.~68!
becomes, expressed in the above dimensionless quan
~see Appendix A for more details!,

05V
g

2
cos

pk

2
1

2P~h!

hL2 sin~pk/2!sin~pk!~V cotu22/h!

1V2 Re@e2 ipk/2U1
a~k,h!#1V Re@e2 ipk/2U2

a~k,h!#

12 sin~pk!Re@ ieipk/2U3~k,h!#2wrV cos
pk

2

1
wrV

h
~2kEr Pe1V!S S̃1~k,h!cos

pk

2

1Re@e2 ipk/2S̃2
!~k,h!# D , ~74!

where we have chosen to displayh, for clarity, although the
factorization is only possible forh51/2. The first term of Eq.
~74! arises from the matrixG; the factor cos(pk/2) is simply
due to the averaging over the two trijunction points limitin
a lamella. The matrixK contributes the next two terms, pro
portional to L22. The first, containingV, describes the
change of curvature due to the bending of the interface o
a large scale, and is therefore equivalent to the capillary t
in the dilute binary alloy problem. The second gives t
change in average curvature upon variation of the lo
lamellar spacing. All terms containing the function
Un

a(h,k), defined in Appendix A, are due to the eutec
diffusion field. Finally, the terms proportional tow arise
from the matrixŨ.

Equation~74! is exact and can be solved numerically. B
it is also useful to simplify this equation in order to rend
the physical interpretation of the instability more transpare
To this end, let us group the terms with equal powers oV
and rewrite Eq.~74! as

a~k!V22b~k!V1c~k!50. ~75!

To obtain a simplified expression, we expand the coefficie
a(k), b(k), andc(k) in powers ofk. Details on this proce-
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y
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dure can be found in Appendix B. It turns out that an expa
sion up to orderk2 is sufficient to obtain a satisfying agree
ment with the direct numerical solution of Eq.~74!. We
obtain

a~k!52P~1/2!1
wr

r̃0~k!
, ~76a!

b~k!5wr2g/22S 2p2P~1/2!cotu

L2 1
R0

2 Dk2

2
2w Per 2kE

r̃0~k!
, ~76b!

c~k!58p2P~1/2!S 12
1

L2Dk2, ~76c!

where r̃0(k) is defined by Eq.~64!, and R0 is a constant
given by Eq.~B11!. We note that, to obtain these expre
sions, we have only kept the leading order terms of each
the contributions in Eq.~74! and dropped several terms o
orderuku andk2 that turn out to give negligible contribution
at the onset of instability for the reasons detailed in App
dix B. The simplified stability spectrum defined by the equ
tions above will be used below to derive simple analytic
expressions for the onset velocity and wavelength. Mo
over, it will allow us to identify the terms that contribute t
the effective surface tension in the long-wavelength f
boundary formulation presented in Sec. VI. In the rest of t
paper, the results based on this simplified spectrum will
systematically checked against the direct numerical solu
of Eq. ~74!.

FIG. 5. Stability spectra of the symmetric eutectic atL51, Pe
50.01, g51, r 51, kE50.05, andu545° ~a! without impurity
(w50) and ~b! with a small amount of ternary impurity (w
50.01). Full lines, real modes; dashed lines, complex modes.
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B. Binary versus ternary eutectic: The limit k˜0

Let us first examine the limitk→0 of the stability spec-
trum, which governs the relaxation to steady-state gro
after an infinitesimal translation of the solidification fro
along thez axis. Although this is not the limit of interest fo
morphological instability, it is worth a brief discussion
understand more fully the subtle effects of the ternary im
rity on the complete stability spectrum.

Since, as mentioned above, the complete eigenvalue e
tion is of degree four inV with real coefficients, there ar
four branches of the dispersion relation, and modes can
real or occur in complex conjugate pairs. In the complet
symmetric case, each of the two equations~68! gives a pair
of branches. To calculate the stability spectra, we must
evaluate numerically the sums occurring in the functio
Un(k,h) to obtain the coefficients of the polynomial inV,
which can then be solved for eachk. Figure 5 shows a com
parison between the stability spectrum of a binary eute
(w50) and a eutectic with a small amount of impuritie
‘‘small’’ meaning that we stay far below the threshold
instability. We have chosen the parametersg andL in order
to reproduce, for the binary eutectic, Fig. 4~b! of DL’s ar-
ticle. Without impurities, we can distinguish two types
branches. There is always a characteristic diffusive bran
which is real and satisfiesV}D(L)k2 for k→0: the spacing
can be locally adjusted by ‘‘diffusion’’ inl space@23#. This
branch is related to the long-wavelength lamella eliminat
instability for l,lmin : the effective diffusion coefficien
D~L! is negative forL,1. The companion of this branch i
also real, with strongly negative growth rates. The sec
pair of branches is complex for smallk. This mode gives rise
to the 2l-O instability for sufficiently off-eutectic composi
tions: it becomes complex up to the ‘‘Brillouin zone
boundaryk50.5 and its real part becomes positive.

When we add a small amount of impurities (w50.01), we
find that the diffusive and oscillatory branches are nea
unaffected; however, the companion of the diffusive bran
undergoes a drastic change. Physically speaking, this st
reaction to a seemingly small perturbation is due to the
troduction of a new conservation law. In the binary eutec
this mode describes the relaxation of an interface by the
tion of the trijunction points with respect to the temperatu
gradient~in thez direction!. At the eutectic composition, thi
relaxation involves only short range interlamellar diffusi
and is therefore fast. On the other hand, for a flat interfa
the impurities must diffuse over a length scale of the orde
the diffusion length to achieve relaxation. This leads to mu
slower decay rates for small wave numbers.

To see more formally how this change arises, let us c
sider Eqs.~76! in the limit k→0. Without the impurity terms
(w50), a(k) andb(k) stay finite in the limitk→0, whereas
c(k)}k2. HenceV}k2 leads to a balance between the la
two terms of Eq.~75!. In the impurity terms, we have
r̃0(k)→2kEr Pe fork→0, and fork50 we obtain

S 2P~1/2!1
w

2kE PeDV22
g

2
V50, ~77!

yielding the solutions,V50, for the diffusive branch and
V52g/@4P(1/2)1w/(kE Pe)#, for its companion. In the
h

-

a-

be
y

st
s

ic
,

h,

n

d

y
h
ng
-
,
o-

e,
f
h

-

t

latter expression, the impurity contribution is dominant f
small Péclet number and small impurity partition coefficien
and hence this branch is strongly influenced by the addi
of impurities. As the terms proportional tor̃0(k)21 also ap-
pear in the classical Mullins-Sekerka analysis of a mo
phase solidification front, we will hereafter refer to th
branch as the MS branch.

The oscillatory branch is little affected by the addition
impurities. The reason is that the second of Eqs.~68! does
not contain the MS terms atk50. We will discuss the rela-
tion between long- and short-wavelength instabilities in m
detail in Sec. VII.

The derivation of Eqs.~74! and~76! is based on the qua
sistationary approximation of the two diffusion equation
This approximation relies on the assumption that the wa
length of the perturbation is smaller than the diffusi
length, and hence breaks down fork!Pe. In the framework
of the DL formalism, however, the calculation becomes e
tremely tedious if this assumption is relaxed, and the res
of this calculation will not be displayed here. The effecti
interface formulation to be presented in Sec. VI, howev
easily allows us to relax this assumption and to include
dynamics of the diffusive boundary layer. As a result, t
MS branch of the spectrum becomes complex fork!Pe,
corresponding to an oscillatory relaxation of the interface
steady-state growth driven by oscillations of the impur
boundary layer that is already well-known for a monopha
front. As we shall see below, the morphological instabil
leading to colony formation involves only modes withk@Pe
for which the quasistationary approximation is valid.

C. Onset of instability

Let us now examine the onset of instability and comp
our findings to the well-known results for dilute binary a
loys. For the one-sided model, the constitutional superco
ing ~CS! criterion is fairly accurate. This criterion states th
a monophase solidification front is unstable if the diffusi
length is less than twice the thermal lengthl T5m̃D c̃/G. In
our dimensionless variables, this is equivalent tog,2wr.
The Mullins-Sekerka analysis shows@10# that the actual
critical velocity differs from CS by corrective factors that a
usually small. The critical wavelengthlc at the onset of
instability scales aslc;(d0l T l̃ )1/3, whered0 is the capillary
length.

Let us briefly comment on some consequences of
scaling. From Eq.~28! we can deduce that the eutectic spa
ing lmin scales aslmin;(d0l )1/2. Therefore, for low Pe´clet
numbers we always expectlmin!lc , and hence we can con
sider the limit of smallk for the determination of the onset o
instability. On the other hand,lc will always be smaller than
the diffusion length, and we havek l̃ /2p@1, or equivalently
k@Pe. Therefore, we may use the simplificationr̃0(k)
'2puku in Eqs.~76!.

The occurrence of unstable modes is determined by
behavior ofb(k): if wr2g/2 is positive and large enough
b(k) becomes positive for a certain range ink. We want to
determine the critical valuegc of the parameterg where the
first unstable mode occurs, and the wave numberkc of this
mode. The two solutions of the quadratic equation~75! are
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FIG. 6. Stability spectra for
varying g and L and w50.1, Pe
50.01,r 51, kE50.05, andu545°.
~a! g50.15, L51; ~b! g50.05,
L51; ~c! g50.15, L51.1; ~d! g
50.05, L51.1; ~e! g50.15,
L51.5; ~f! g50.05, L51.5. Solid
lines, real modes; dashed line
complex modes. Note that we sho
only the diffusive and MS branche
in the region of smallk where they
are unstable. The inset in~a! shows
in more detail the part of the spec
trum at smallk.
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b~k!6Ab2~k!24a~k!c~k!

2a~k!
. ~78!

As the producta(k)c(k) is always positive and finite, the
solutions become complex whenb(k) tends to 0, and we
have ReV5b(k)/2a(k). Hence the two conditions to obtai
gc and kc are simplyb(k)50 and db(k)/dk50. Let us
rewrite the first of these conditions in the dimensional qu
tities and divide through bywr. The result is

12
GD̃

m̃D c̃vp

2
G l̃ cosu

m̃D c̃

k2

2
2

R0l2

4p2wr

k2

2
2

2kE

k l̃
50. ~79!

There are two terms proportional tok2. The first is the sur-
face tension term, which stabilizes the interface. It is ana
gous to the surface tension term in the monophase MS s
trum, except that it is multiplied by a geometrical fact
cosu. This factor is present because the eutectic interfac
made of an array of arcs, each one linking two trijunctio
which renders the front less stiff than a flat monophase
terface. The second term arises from the eutectic diffus
field. It can be directly interpreted by noting that the abo
-

-
c-

is
,
-
n

e

equation becomes identical to the result for a monoph
planar interface if we define the effective capillary length

d̄05
G cosu

m̃D c̃
1

R0 Pel

4p2w
. ~80!

The above expression implies that the interlamellar eute
diffusion field has a stabilizing effect. This is rather remar
able since it implies that the two diffusion fields~associated
with the eutectic components and the ternary impurities,
spectively! play antagonistic roles in the instability.

From the conditiondb(k)/dk50 we obtain the expres
sion

kc
35

2kE

d̄0 l̃ 2
~81!

for the critical wave number. Furthermore, substituting t
expression in Eq.~79!, we find
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vc5
GD̃

m̃D c̃

1

123~ d̄0kE
2/2l̃ !1/3

~82!

for the critical pulling speed. This expression is equivalen
the constitutional supercooling criterion (vCS5GD̃/m̃D c̃)
up to the capillary correction in the denominator of the s
ond term on the RHS of Eq.~82!. This correction is typically
negligibly small, except for very low impurity concentration
where the effective capillary length becomes large. Con
quently, as for a monophase front, there is a critical impu
concentration below which the eutectic front is complet
stable.

The above results show that the instability of the eute
interface is qualitatively similar to the standard MS instab
ity of a monophase front, as far as the expressions forkc and
vc are concerned, up to a renormalization of the surface
sion as described by Eq.~80!. One main difference, howeve
is that the branch of the spectrum that becomes unstab
complex, which suggests the existence of oscillatory patte
with a wavelength much larger than the lamellar spacing.
decide whether such patterns are observable experimen
we need to examine next how this complex branch evol
above the onset of instability.

D. Above onset

For v.vc , the solutions forV still satisfy the quadratic
equation~75!. The nature of the mode, whether complex
real, is determined by the sign of the discriminant,b2(k)
24a(k)c(k). The most important parameter, besidesg, that
controls the discriminant isL, becausec(k) strongly de-
pends onL nearL51. We are interested only in the cas
L.1, since spacings belowlmin are intrinsically unstable
For L near 1,c(k) is small, and real modes should appe
In contrast, for largerL, complex modes should be favore

To check this prediction, we plot in Fig. 6 a series of
stability spectra, calculated using Eq.~74!, for varyingg and
L. We chosew50.1, which, using the constitutional supe
cooling criterion, gives a critical temperature gradient
gCS50.2. We display spectra for two values ofg, one close
to onset (g50.15), and one far above the onset (g50.05).

Let us first comment on the structure of the spectrum
small values ofk. The inset of Fig. 6~a! shows that the

FIG. 7. Structure of the dispersion relation as function of
parametersL5l/lmin andg/gCS5vCS/vp . The onset of instability
~constitutional supercooling! is at the bottom of the diagram. Th
meanings of R, RC, CR, and C are defined in the text.
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growth rate still satisfies Eq.~77! for k50, but now ask
grows the MS branch and the diffusive branch meet to fo
a complex conjugate pair, becauseb(k) approaches zero an
the discriminant becomes negative. Whenk grows further,
the real part ofV becomes positive, and the branch may s
complex or split again in two real branches, both with po
tive growth rates. ForL51 @Figs. 6~a! and 6~b!#, the spectra
always exhibit real modes above the onset, and the m
with the maximum growth rate is real for both values ofg.
For L51.1 @Figs. 6~c! and 6~d!#, near the onset only a nar
row band of real modes is present, and the fastest grow
mode is complex. This changes at lowerg: the k range of
real modes has increased, and the fastest growing mod
real. Note that in both spectra there are two maxima of
growth rate, one real and the other complex. At a cert
value ofg, the two maxima are of equal height; at this poin
we have a finite jump in the wave number of the fast
growing mode wheng is varied, and two perturbations o
different wave numbers grow with the same rate. Finally,
L51.5 @Figs. 6~e! and 6~f!#, there is a range ofg where the
spectrum is entirely complex, and only far above the on
do real modes appear. The fastest growing mode is alw
complex.

We can summarize these results in a diagram that sh
the nature of the spectrum in the plane (L,g) ~Fig. 7!. For
this diagram, we normalize the temperature gradient by
critical value according to the constitutional supercooli
criterion, gCS52rw. Note that we haveg/gCS5vCS/vp ,
where vCS5GD̃/m̃D c̃ is the critical velocity. We classify
the spectra into four categories, according to the occurre
of maxima. We denote by R spectra with only a real ma
mum @Fig. 6~a!#; spectra with a real and a complex max
mum are denoted by RC when the fastest growing mod
real @Fig. 6~d!#, and by CR when it is complex@Fig. 6~c!#.
Finally, the entirely complex spectra are denoted by C. F
ure 7 shows for which parameters we can expect predo
nantly real or complex modes; around the line between
and CR, we can have the competition of two differe
modes. This diagram was determined using Eq.~74! with the

FIG. 8. Wave numbers of some characteristic points in the
bility spectrum as a function ofg/gCS for w50.1, Pe50.01, kE

50.05, andL51.1. Solid lines with circles, real maximum; with
crosses, limit between real and complex modes; with triang
complex maximum; and with diamonds, marginally stable mo
The dashed and dash-dotted lines are the approximations fo
complex maximum and the marginal mode given by Eqs.~83! and
~85!, respectively.
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parametersw50.1, Pe50.01, andkE50.05. Increasing the
concentration of impurities~increasingw) favors real modes
all curves are shifted to the right and to the bottom in
diagram. The Pe´clet number and the partition coefficient in
fluence the diagram only in the part near the onset of in
bility.

To describe a spectrum in more detail, we may use s
eral characteristic wave numbers: the wave numbers of
fastest growing modes, the limit between real and comp
modes, and the wave number of the marginally stable m
km . Figure 8 shows these quantities as a function ofg for
L51.1. As can be seen from Figs. 6~c! and 6~d!, for this
value of L real modes become dominant only well beyo
the CS threshold.

To investigate systematically these quantities as functi
of the control parameters, it is cumbersome to use Eq.~74!
because of the sums involved in the functionsUn . There-
fore, it is convenient to obtain approximate expressions
the wave numbers of the marginal mode and the comp
maximum using the approximate spectrum defined by
~75! and Eqs.~76!. We will show in Sec. VI that this sim-
plified spectrum can be recovered from an effective interf
approach, which applies to an arbitrary phase diagram
composition. It is therefore worthwhile to investigate t
quality of this approximation in the present symmetric ca
by quantitative comparison with the exact spectrum of E
~74!. Figure 9 shows that, for the example of the last sp
trum in Fig. 6, the qualitative aspect of the spectrum is w
reproduced. We checked several cases and always found
the approximation shifts the marginally stable mode and
maxima to largerk. The error, however, never exceed
about 30%. The imaginary part ofV is very well approxi-

FIG. 9. Comparison of stability spectra obtained by the f
calculation, Eq.~74!, and by Eq.~75! using Eqs.~76! for the coef-
ficients a, b, andc. Symbols, full calculation~circles, real modes;
crosses, complex modes!. Lines, approximation~solid lines, real
modes; dashed lines, complex modes!. The parameters are the sam
as for Fig. 6~f!.
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mated over the whole range ofk. We also recalculated the
diagrams of Figs. 7 and 8, and found that the lines
slightly shifted, but the qualitative structure of the diagram
stays the same. It seems therefore valid to use Eqs.~76! for a
general analysis.

The marginally stable mode is always complex, andkm
can be determined by the conditionb(km)50. In addition,
far enough above the onset the term in 1/k in Eq. ~76b! can
be neglected. We find

km
2 5

1

a S wr2
g

2D ~83!

with

a5
2p2P~1/2!cotu

L2 1R05
4p2wl

l2 d̄0 , ~84!

whereR0, as before, is given by Eq.~B11!. We can also give
an approximate expression for the wave number of the c
plex maximum. For complex modes, ReV5b(k)/2a(k). If
we neglect the first term in Eq~76a! for a(k), we obtain

kmax'km /A35A 1

3a S wr2
g

2D . ~85!

The resulting curves forkm and kmax are shown in Fig. 8.
For the real maximum, all terms in the quadratic equation
V have to be retained, and no simple expression for the w
number of the maximum can be obtained.

Some remarks seem to be in order here to clarify
meaning of Eq.~83! in the dimensional variables. Sinc
g/gCS5vCS/vp , the limit of high pulling speeds corre
sponds tog→0. In this limit, the structure of the spectrum
varies very little with the pulling speed, because both

characteristic length of the MS problem,Ad0 l̃ and the spac-
ing lmin vary as 1/Avp far above the onset. Hence, if w
increase the pulling speed andat the same timechange the
lamellar spacing such thatL stays constant, the only param
eter that changes~exceptg! is the Pe´clet number. But Pe
appears in the problem only in the last term of Eq.~76b!,
which we have neglected in order to obtain Eq.~83!. This
term becomes important only at very high pulling speeds
leads to the absolute stability of the interface, as in the c
of a dilute binary alloy. Substitutingk5kl/2p in Eq. ~84!
shows that, for constantL, far above the CS threshold th
wavelength of the fastest growing complex mode scales
Ad̄0l , as for monophase solidification. On the other hand
experiments on eutectics unstable states are usually rea
from stable states by a sudden increase of the pulling ve
ity @27,28#. The lamellar spacing immediately after the jum
is the same as before, butlmin and consequentlyL have
changed. Hence, starting from the same initial state and v
ing the final pulling speed corresponds to a variation of b
g and L. Eq. ~83! still applies, but in view of Eq.~84! no
simple scaling withvp is expected. A last remark concern
the dependence ofkm on the impurity content. Taking the

limit g→0 in Eq. ~83! shows thatkm;Aw;Ac̃`. The rea-
son for this behavior is that the effective capillary length, E
~80!, scales asd̄0;w21, whereaslmin is independent ofw.

l
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6880 PRE 60MATHIS PLAPP AND ALAIN KARMA
This means that the MS instability length increases with
creasingw, whereas the lamellar spacing stays constant,
hence we expect the wavelength of the primary instability
a eutectic front to decrease with increasing impurity conte

Finally, let us verify that the quasistationary approxim
tion we have used to obtain the above results is justified.
this end, we estimate the order of magnitude of the th
terms in the diffusion equation, Eq.~7a!. For a perturbation
du of wave numberk.1/l̃ ~k.Pe! growing at ratev, we
have] tdu;vdu, ]zdu;kdu, and¹W 2du;k2du. In terms of
the dimensionless variables, the magnitude of these term
uVuPe, k Pe, andk2. From Fig. 9 we see that, fork.Pe,
uVu,Bk with some numberB of order unity, and hence th
omission of the time derivative from the diffusion equation
well justified for the rangek.Pe of interest here. It is als
possible to relax the quasistationary approximation. Th
the growth ratev appears in the denominators of all th
sumsSn(k) and S̃n(k). An analytic treatment becomes im
possible, but the equation forV can be iterated numerically
We have checked that for the present range of parame
the use of this complete calculation leads only to insign
cant changes in the spectra. Note, however, that for hig
Péclet numbers it may be necessary to include this effec

E. Oscillatory modes

The most interesting result of this analysis is evidently
existence of complex modes. To illustrate the type of mic
structures these modes would generate, we have calcu
the trajectories of the trijunction points for a particular e
ample, using the definitions, Eqs.~41!, and the complex am
plitudesXk

s and Yk
s obtained from the eigenvalue equatio

For the symmetric alloy at the eutectic composition, the sy
metry between thea and b phases gives immediatelyXk

b

5exp(ikl/2)Xk
a . The amplitude and phase ofXk

a may be
chosen arbitrarily, as this amounts to fixing the origins of
space and time axes. TheYk

s were then calculated using th
growth constraints Eqs.~40!.

FIG. 10. Microstructures created by complex linear grow
modes. Left, a single mode traveling to the left; right, a stand
wave mode obtained by the superposition of two complex conjug
modes. Growth direction from bottom to top.
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We chose the complex modes with a maximum grow
rate of Fig. 6~e! (w50.1, L51.5, g50.15). As for every
point in the complex part of the spectrum, there are t
‘‘degenerate’’ modes with complex conjugate growth rat
The modes of our example have a wavelength of 10l ~k
50.1! and growth ratesV50.034760.257i. One of these
two modes is depicted in the left part of Fig. 10. We see t
it has a ‘‘traveling wave’’ structure. The wavelength in thez
direction, expressed in lamellar spacings, is 2p/Im V, and the
propagation velocity isv/vp5Im V/2pk. There are two
complex conjugate modes: one propagates to the left, and
other to the right. As their growth rates are equal, we c
create any superposition of the two, in particular a ‘‘stand
wave’’ shown in the right part of Fig. 10.

The reason for the existence of these oscillatory mode
the interplay between the destabilizing impurity diffusio
field and the dynamical response of the internal lame
structure. A protrusion of the interface rejects impuriti
more efficiently than a flat interface, and hence grows fas
But as the curvature of the front increases, the trajectorie
the trijunctions are more and more curved, and the lo
spacing increases. This leads to a decreased efficiency o
interlamellar eutectic diffusion and, hence, the interfa
slows down. As a result, the protrusion grows back. T
lamellar spacing, however, still increases due to the geom
ric constraints, and the process overshoots, leading to a
cave deformation of the front. This gives a geometric int
pretation of the difference between traveling and stand
waves: for the traveling wave, the lamellar spacings to
right and to the left of the protrusion are different, providin
a driving force for the propagation of the perturbation. F
the standing wave, the interface shape and the spacing
‘‘in phase,’’ and the perturbation oscillates without propag
tion. Hence, the resulting microstructure depends on the
tial relation between interface shape and lamellar spac
This implies that in an experiment, where the initial pertu
bations of interface position and lamellar spacing have
reason to be in a particular phase relation, one should
serve all possible superpositions.

There are two characteristic quantities~besides the wave
number! related to an oscillatory mode: its propagation v
locity, or equivalently the ratio of the wavelengths in thez
and x directions, 2pk/Im V, and the ratio of its frequency

g
te

FIG. 11. Ratio of oscillation frequency to amplification rat
Im V/ReV, and ratio of the wavelengths in thez and x direction,
2pk/Im V, for the oscillatory modes with maximum growth rates
a function of g/gCS. Other parameters areL51.5, w50.1, Pe
50.01,kE50.05.
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and its amplification time, ImV/ReV, which determines
how many oscillations should be observable before the
plification leads to lamella elimination. In Fig. 11 we sho
both quantities as a function ofg for L51.5, where complex
modes always dominate. We used Eqs.~75! and~76!, deter-
mined for each value ofg the wave number of the faste
growing mode, and calculated ReV and ImV at this point.
Approximate values could be obtained by using Eq.~85! to
obtainkmax. Figure 11 shows that the ratio of frequency a
amplification rate diverges when we approach the onset. T
is to be expected, as the growth rate vanishes, wherea
imaginary part ofV remains finite. With decreasingg, fewer
and fewer oscillations are observable before lamella term
tions occur. However, even atg50, more than two oscilla-
tions are completed before the amplitude of the mode
grown by a factore, which means that such modes should
transiently observable. The amplification ratio generally
creases whenw decreases orL increases. The ratio of th
wavelengths is fairly constant and slightly increases wheL
decreases orw increases.

VI. EFFECTIVE INTERFACE APPROACH

The discrete analysis of Sec. IV can in principle be us
to calculate the stability properties of a eutectic front for
arbitrary phase diagram and composition. As we have s
however, the resulting eigenvalue equation is quite com
cated. It is therefore advantageous to develop an alter
formulation of the stability problem by exploiting the fa
that the instability wavelength is typically much larger th
the lamellar spacing. The idea, therefore, is to consider
shape of the large-scale front instead of the actual lame
interface, and to solve a modified free boundary problem
this ‘‘effective interface,’’ with boundary conditions that ac
count for the effect of the underlying lamellar structure.

It is useful to present this approach in two steps. In a fi
step, we write down the free boundary problem for the
fective interface in the absence of surface tension effe
This yields a rigorous long-wavelength limit where the e
pression forV agrees up to orderk2 with the one obtained
from taking the smallk limit of the full discrete spectrum
This expression also reduces, in the absence of a ter
impurity, to the one derived by Langer@23# for a binary
eutectic, and contains the long-wavelength instability lead
to lamella termination forL,1. In a second step, we intro
duce phenomenologically the effect of surface tens
guided by the insights of Sec. V. In the following, we w
allow the volume fractionh and the eutectic liquidus slope
ma and mb to be arbitrary, and we will only require fo
brevity of notation thatm̃a5m̃b . We will briefly comment
on the general case, wherem̃aÞm̃b , at the end of this sec
tion.

A. Long-wavelength limit

We start by defining the effective interface as the conti
ous curvej(x,t) that interpolates between the displaceme
of the trijunction pointsj j

a and j j
b and a continuous field

y(x,t) for the displacements along thex direction. To obtain
the free boundary problem that governs the large-scale
tion of this interface, we start by writing the diffusion equ
-
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tion for the ternary impurity in the liquid phase and the a
sociated mass conservation condition at the phase bound
which yields the equations

] tc̃5D̃¹2c̃, ~86!

2D̃]nc̃5~vp1 j̇ !~12kE!c̃, ~87!

wherekE is given by Eq.~16!, and we have used in Eq.~87!
the expression for the normal interface velocity in the mo
ing frame, vn5vp1 j̇, which is valid for small amplitude
deformations of the interface. Next, we need a boundary c
dition for c̃ on this interface. For this purpose, we note th
lamellae can be assumed to grow locally in steady state
long as the interface deformation is on a scale much lar
than the lamellar spacing. Therefore, we can assume tha
such deformations,c̃ obeys locally the Gibbs-Thomson con
dition

T5TE2m̃c̃2DTJH~l,vn!, ~88!

where the contribution of the eutectic structure to the int
facial undercooling is given by the Jackson-Hunt formula

DTJH~l,vn!5
1

2
DTminS l

lmin
1

lmin

l D , ~89!

with DTmin andlmin given by Eqs.~27! and~28!. Finally, to
complete the problem, we need to relate the local lame
spacingl(x,t) and the shape of the frontj(x,t). This is
done, as in Ref.@23#, by noting that the local lamellar spac
ing is given by

l~x,t !'l0S 11
]y

]xD , ~90!

for y!l wherel0 is the unperturbed spacing. The fieldy
can then be eliminated by using the geometrical constr
that lamellae grow locally perpendicular to the solidificati
front, which, expressed in terms of the continuous fiel
takes the form

]y~x,t !

]t
52vp

]j

]x
. ~91!

Equations~86!–~91!, together with the boundary conditio
c̃5 c̃` far from the interface, define the free boundary pro
lem for small amplitude and long-wavelength deformatio
of the effective interface.

The stability spectrum can now be obtained by carry
out a standard linear stability analysis of the above eq
tions, which is analogous to the analysis for a monoph
front with the added ingredient that the Gibbs-Thomson c
dition is coupled to a slow evolution equation forl(x,t)
obtained by combining Eqs.~90! and ~91!.

We start the stability analysis by writing the perturbatio
j andy in terms of Fourier modes,

j~x,t !5jk exp~ ikx1vt !, ~92a!

y~x,t !5yk exp~ ikx1vt !. ~92b!
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6882 PRE 60MATHIS PLAPP AND ALAIN KARMA
The impurity diffusion field is expanded in Fourier mod
according to Eq.~54! and, carrying out the same steps
from Eqs. ~54! to ~58!, allows us to determine the Fourie
coefficients. As a result, Eq.~58! is replaced by

b̃k5F q̃k2
2

l̃
~12kE!G21S v

D̃
1

4kE

l̃ 2 D jk ~93!

with

q̃k5
1

l̃
1A1

l̃ 2
1k21

v

D̃
. ~94!

We will in the following again use the quasistationary a
proximation of the impurity diffusion equation, which corre
sponds to dropping the termv/D̃ on the RHS of Eq.~94!. As
discussed before, we are mainly interested in perturba
wavelengths much smaller than the diffusion length. N
that in this limit, and within the quasistationary approxim
tion, we haveq̃k'uku. We will not, however, make use o
this simplification for the sake of generality. Next, we linea
ize the JH formula around the initial spacingl0 and the
pulling speedvp :

DTJH~l,v !5DTJH~l0 ,vp!1
]DTJH

]l U
l0 ,vp

l0

]y

]x

1
]DTJH

]v U
l0 ,vp

j̇, ~95!

where we have usedvn5vp1 j̇ andl2l05l0]y/]x from
Eq. ~90!. The Gibbs-Thomson condition, Eq.~88!, linearized
in the perturbations, becomes

Gjk5m̃D c̃S 2

l̃
jk2b̃kD 2

]DTJH

]l U
l0 ,vp

vpk2

v
jk

2
]DTJH

]v U
l0 ,vp

vjk . ~96!

FIG. 12. Comparison between the full calculation and the lo
wavelength limit, Eq.~97!, for the stability spectrum. Symbols, fu
calculation, Eq.~74!; circles, real modes; crosses, complex mod
Lines, long-wavelength limit, Eq.~97!; solid lines, real modes
dashed lines, complex modes. The parameters are the same
Figs. 6~f! and 9.
-

n
e
-

Inserting Eq.~93! for b̃k with the quasistationary approxima
tion for q̃k , and using Eqs.~27! and ~28! to calculate the
derivatives ofDTJH, we obtain a quadratic equation forv.
In the dimensionless quantities defined as before, this eq
tion reads

S wr

r̃0~k!
1

P~h!

2h~12h! DV22S wr2
g

2
2

2w Per 2kE

r̃0~k!
DV

1
2p2P~h!

h~12h! S 12
1

L2Dk250, ~97!

with r̃0(k) defined by Eq.~64!. Figure 12 shows a compari
son between this formula and the full calculation, Eq.~74!,
for the same parameters as in Fig. 9. We see that, indeed
features of the spectrum at smallk are correctly predicted
including the transition from real to complex growth rat
with growing k. This means that the simple calculation ou
lined above is able to capture the qualitatively new feature
the instability. Formally, the occurrence of the compl
growth rates is due to the fact that the equation is quadr
in v, whereas the analogous equation of the Mullins-Seke
calculation is linear. This difference arises from the grow
constraint resulting from Cahn’s hypothesis. Physically,
change in the local lamellar spacing resulting from this co
straint counteracts the destabilization of the front by the
purities. This is due to the fact that in a convex~i.e., protrud-
ing! part of the front, the growing lamellar spacing leads
an increase in the JH undercooling, whereas the invers
true for concave parts. The magnitude of this effect is p
portional to the slope of the JH undercooling versus spac
curve, which increases with lamellar spacing. The osci
tions occur because only thetime derivativeof the spacing
depends on the instantaneous front shape, but not the spa
itself. Therefore, the perturbation of the lamellar spacing
phase shifted byp/2 with respect to the perturbation of th
front shape. Consequently, during an oscillation cycle
former has its maximum amplitude when the front is plan
In summary, the long-wavelength oscillations are created
the interplay of the destabilizing effect of the impurity diffu
sion field, which is the same as for a monophase solidifi
tion front, and the dynamical response of the underly
lamellar structure.

B. Inclusion of surface tension

As shown in Fig. 12, the spectrum derived from the s
bility analysis of the effective interface free boundary pro
lem is in good quantitative agreement with the full spectru
at smallk. This approach, however, fails to predict the res
bilization of the interface at largerk because it lacks capil
larity. To add this effect, we can use the insights of Sec
for the symmetric case, where it was noted that the eute
stability spectrum could be interpreted as a planar interf
spectrum with an effective surface tension. This suggests
we can simply add to the Gibbs-Thomson condition@Eq.
~88!# a capillary term proportional to the curvature of th
effective interface, which yields the new condition

T5TE2m̃c̃2DTJH~l,vn!2GeffK@j#, ~98!

-

.

for
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whereGeff is an effective Gibbs-Thomson coefficient. For t
completely symmetric case, we can identifyGeff by compar-
ing Eq. ~97! to Eq. ~75! with the approximate expression
Eqs.~76!, for the coefficientsa(k), b(k), andc(k), which
yields at once the expression

Geff5GE1
MDc Pel0

4p2
R0 , ~99!

whereGE5G cosu andR0 is given by Eq.~B11!.
Let us now consider the extension of this result to a g

eral alloy phase diagram and an arbitrary composition. T
RHS of Eq.~99! contains two contributions that arise fro
the large-scale bending of the effective interface. The firs
in terms of the discrete formalism, the part of the curvat
matrix K that is not contained in the JH formula. For arb
trary Gibbs-Thomson constants, contact angles, and vol
fractions, simple arguments detailed in Appendix C lead
the conclusion that the reaction of a composite interface
small curvature can be described by a Gibbs-Thomson c
stantGE defined by Eq.~C4! that depends onGa , Gb , ua ,
ub and the volume fractionh.

The second term on the RHS of Eq.~99! originates from
the eutectic diffusion field, which was shown in Sec. V
have a stabilizing effect analogous to a supplementary c
illary term. For general alloy composition and phase d
gram, this contribution can in principle be extracted by e
panding the complete spectrum to orderk2. Since, as noted
earlier, calculating this spectrum involves finding the roots
a fourth order polynomial inV, this expansion is extremel
tedious and was not carried out here. We have found num
cally, however, that reasonably accurate predictions can
obtained for off-eutectic compositions if we simply useGeff
defined by Eq.~99! with GE given by Eq.~C4!. In view of
the large uncertainty in the knowledge of several of the m
terials’ parameters, notably the Gibbs-Thomson consta
and the diffusion coefficients, this level of accuracy see
presently sufficient to interpret experimental results. O
very precise experiments could probe the differences
tween the full calculation and this approximation.

Let us state the final result for the stability spectrum
two different forms to display the analogies with the MS a

FIG. 13. Comparison between the full calculation and Eq.~104!
for an off-eutectic composition~h50.65!. The other parameters ar
as for Figs. 9 and 12. Symbols, full calculation, Eq.~74! ~circles,
real modes; crosses, complex modes!. Lines, Eq.~97!; solid lines,
real modes; dashed lines, complex modes.
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DL calculations, respectively. First, to compare to the M
instability, the dispersion relation can be written

v l̃ 2

2D̃
5A~k l̃ !S 12

l̃

2l T
2

d̄0

2 l̃
~k l̃ !2D 22kE

2
l̃ A~k l̃ !

4m̃D c̃
DTminF S L2

1

L D vpk2

v
1

vL

vp
G , ~100!

whereA(k l̃ ), the thermal lengthl T , and the effective capil-
lary lengthd̄0 are defined by

A~k l̃ !5A11~k l̃ !22112kE , ~101!

l T5m̃D c̃/G, ~102!

d̄05
Geff

m̃D c̃
. ~103!

Without the eutectic part on the RHS, Eq.~100! is the clas-
sical MS result for the one-sided model.

In the dimensionless quantities used by DL, the result

S wr

r̃0~k!
1

P~h!

2h~12h! DV2

2Fwr2
g

2
2S 4p2g~h!P~h!

L2 1R0Dk2

2

2
2w Per 2kE

r̃0~k!
GV1

2p2P~h!

h~12h! S 12
1

L2Dk250,

~104!

with the functiong(h) given by

g~h!5
GE~h!~ma1mb!/2

~12h!mbGa sinua1hmaGb sinub
. ~105!

Figure 13 shows both the full calculation and the result
Eq. ~104! for the stability spectrum of the symmetric pha
diagram at an off-eutectic composition,h50.65. The two are
in reasonably good quantitative agreement, even though
value ofR0 corresponding toh51/2 was used in Eq.~99!.

Let us now briefly indicate which modifications will occu
if the two impurity liquidus slopes differ,m̃aÞm̃b . In this
case, the eutectic composition depends on the impurity c
centration, and there is a eutectic boundary layer with a m
nitude depending on the impurity concentration at the int
face. If the two diffusion coefficientsD and D̃ are equal (r
51), all results carry over if we use the liquidus slopeM̃

defined by Eq.~5! instead ofm̃ in all equations, and redefin
the parameterw5M̃D c̃/MDc. This should usually be a rea
sonable approximation. If the two diffusion lengths are ve
different, however, one would have to consider the eute
boundary layer separately. Then, a separate Fourier ex
sion has to be used for the eutectic boundary layer, and
~96! is replaced by a more complicated form containing bo
diffusion lengths.
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VII. SHORT-WAVELENGTH MODES

Up to now, we have only considered the instabilities ar
ing from the diffusive and MS modes. Let us now turn to t
effect of the ternary impurity on the 2l-oscillatory ~2l-O!
instability at off-eutectic compositions. In Fig. 14, we show
series of spectra at an off-eutectic composition~h50.8! with
increasing impurity concentration. The first spectrum, wi
out impurity, again reproduces one of DL’s figures. The d
fusive branch is completely stable, but there is an unsta
complex branch, with the most unstable mode atk50.5. For
a small impurity concentration (w50.01), the long-
wavelength morphological instability is simultaneous
present, but the structure of the spectrum stays qualitati
unchanged. For still higher impurity concentration (w

FIG. 14. Stability spectra forh50.75,L51, u545°, kE50.05,
and ~a! g50, w50; ~b! g50, w50.01; ~c! g50, w50.05; and
~d! g50.05, w50.1. In ~d! only the unstable branch is shown.
-

-
-
le

ly

50.05), however, the spectrum becomes quite differen
single branch of the spectrum now contains both the lo
and short-wavelength instabilities, making their distincti
somewhat arbitrary, whereas the other branch is comple
stable. We have always found a similar structure for impur
concentrations larger thanw'0.02. Figure 14~d! shows only
the unstable branch forg50.05, w50.1, andL51, for a
comparison with the spectrum at the eutectic composit
shown in Fig. 6~b!. The long-wavelength part of the tw
spectra is very similar, but at the off-eutectic composition
most unstable mode is the 2l-O mode. The growth rates o
the long- and short-wavelength instabilities, however, are
very different, and we can expect a competition between
two.

At k50.5, the matrix elements ofA become real. The
characteristic equation can again be factored in two quadr
equations, which are simply

Aa,a50 and Ab,b50. ~106!

This allows us, in particular, to obtain an equation for t
neutral stability boundaries where the 2l-O mode first be-
comes unstable. For the model alloy with the symme
phase diagram, we have on thea-rich side of the phase dia
gram ~h.0.5!

g52wr2
wr

h
2kEr PeS̃1~0.5,h!12h21

1
2

h S R2~h!2S3~0.5,h!2
2 cotu

L2 P~h! D , ~107!

whereR2(h) andS3(k,h) are defined in appendix A. This i
a direct generalization of DL’s result for the binary eutect
Figure 15 shows the resulting stability diagram forg50.2
andL51. The dashed line is the constitutional supercool
criterion, and the long-range instability is present eve
where above this line. The solid line was calculated us
Eq. ~107!, and the 2l-O mode is unstable to the right of thi
line. We see that when the impurity concentration increas
the range in volume fraction for which the eutectic front
stable decreases. This means that, not surprisingly, the

FIG. 15. Stability diagram for the symmetric eutectic alloy
the space (h,w) for L51, g50.2, Pe50.01, andkE50.05. Solid
line, neutral stability limit for the 2l-O mode. Dashed line, consti
tutional supercooling criterion.
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PRE 60 6885EUTECTIC COLONY FORMATION: A STABILITY ANALYSIS
nary impurity boundary layer enhances the oscillatory ins
bility. Furthermore, there is a large region in parameter sp
where the two instabilities compete and the fastest grow
linear mode needs to be identified from a plot of the sp
trum.

VIII. CONCLUSION

We have performed a linear stability analysis of a th
lamellar eutectic interface in the presence of a ternary im
rity to investigate the initial stages of colony formation. T
extension of Datye and Langer’s method has allowed u
calculate the complete stability spectrum of the steady-s
interface. From previous numerical studies of the binary
tectic case@21#, we expect this discrete stability analysis
be quantitatively accurate for spacings near the JH minim
undercooling spacinglmin .

The most dramatic conclusion resulting from our analy
is that the morphological instability of the eutectic interfa
induced by the ternary impurity is oscillatory, in contrast
the standard MS instability of a planar interface for a dilu
binary alloy, which is nonoscillatory. We have seen that
cillatory modes originate from the interplay between the d
fusive instability driven by the ternary impurity and the ‘‘dy
namical feedback’’ of the local change in lamellar spac
on the front motion. In a transient regime, these mo
should create oscillatory microstructures with a wavelen
of several lamellar spacings, such as the ones displaye
Fig. 10. There indeed seems to be recent experimental
dence for large-scale oscillatory structures of this type i
transparent organic with a dilute ternary impurity@33#, but a
more detailed comparison between theory and experime
now needed.

Aside from its oscillatory character, the morphologic
instability of the eutectic interface is qualitatively simila
near onset, to the standard MS instability of a monoph
front. In particular, we find that the expressions for the cr
cal onset velocity and morphological instability waveleng
are analogous to those for the classic Mullins-Sekerka in
bility of a planar interface. The main difference is that t
restabilization of the interface at short wavelength is c
trolled by an effective surface tension that depends on
geometry of the lamellar interface and on interlamellar d
fusion, which has a restabilizing effect. One consequenc
this result is that the constitutional supercooling criterion t
has been commonly used in the metallurgical literature
predict the onset of instability is indeed applicable for typic
alloy compositions. Note, however, that this criterion b
comes inaccurate for very small concentrations of the tern
impurity.

Above the onset of instability, the stability spectrum c
exhibit both real and complex modes. The scaling of
wavelength of the fastest growing mode with pulling velo
ity depends on the nature of the mode. For complex mo
far above the onset this wavelength scales as the geom
mean of the capillary length and the diffusion length. F
real modes, the situation is more complicated. In both ca
for fixed velocity and lamellar spacing, the wavelength
above the onset and at sufficiently high impurity concen
tion scales as the inverse square root of the impurity conc
tration. Note that all these statements concern theprimary
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instability of the eutectic front and not the finally selecte
colony spacing. After the first colonies have formed, the n
planar front may undergo a complicated sequence of
elimination or tip splitting events, as during the developme
of monophase cellular structures.

Furthermore, we have shown that the eutectic front
namics on scales much larger than the lamellar spacing
be formulated as a free boundary problem with a modifi
Gibbs-Thomson condition that is coupled to a slow evolut
equation for the lamellar spacing. This formulation provid
a deeper physical understanding of the eutectic front dyn
ics on this scale. In addition, we have shown that it can
used to calculate an approximate stability spectrum tha
well suited to interpret experimental data. The effective c
illary length appearing in this spectrum contains contrib
tions both from an averaging over the material properties
the two phases, weighted by geometric factors, and from
eutectic interlamellar diffusion field, which acts as a stabil
ing force.

Finally, we have found that the short-wavelength oscil
tory instability, already present in a binary eutectic, is e
hanced by the ternary impurity boundary layer. This redu
the composition range for stable lamellar eutectic grow
even below constitutional supercooling. Above constitutio
supercooling and for sufficiently off-eutectic composition
the long-range and 2l-oscillatory instabilities are both
present and may compete with each other.

In conclusion, we have shown that the instability of
lamellar eutectic interface in the presence of a ternary im
rity is in some respects similar to the Mullins-Sekerka ins
bility of a dilute binary alloy, but also presents striking di
ferences. There are two interesting future prospects. F
dynamical simulations of the complete equations of mot
are necessary to go beyond this linear stability analysis
to investigate the subsequent stages of the instability, as
as to determine what structures are ultimately formed. W
on these issues using the phase-field method is current
progress. Second, it seems worthwhile to extend the effec
interface approach to a nonlinear regime to model the sh
and dynamics of fully developed colonies, as depicted
Fig. 1.
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APPENDIX A: SUMMARY OF DATYE AND LANGER’S
RESULTS

We will state here DL’s results for the matricesG, K , and
U and transform them into our notations. The matrixG can
be simply read off the definitions of the average interfa
positions^j& j

s ; Eqs.~38!, and of the Fourier expansion, Eq
~41!:

G5
G

2 S 1 1

eikl 1D . ~A1!
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The curvature matrix contains two contributions. The fi
arises from the change in the local lamellar spacing due
the horizontal displacementsyj

s . The second appears whe
the interface is bent on a scale of several lamellae. Then
trijunction points are turned by small angles with respec
their steady-state orientation. These angles can be relate
the time derivatives of the horizontal displacements. Fina
we use the growth constraints, Eq.~40!, and obtain

Ka,a5
2ieikl/2 sin~kl/2!

l2 S 2vp sinua

vlh2 2
cosua

h D , ~A2!

Kb,b5
2ieikl/2 sin~kl/2!

l2 S 2vp sinub

vl~12h!2 2
cosub

12h D ,

~A3!

Ka,b5Ka,a* , ~A4!

Kb,a5eiklKb,b* , ~A5!

where the asterisks in the last two equations denote com
conjugation of all the coefficients, but notv.

For the symmetric phase diagram, we may convenie
rewrite this matrix in the dimensionless parameters defi
in Sec. IV. We remark that in this case we have

lmin
2 5

lG sinu

MDcP~h!
. ~A6!

This relation can be used to eliminate sinu in the matrix; the
reduced lamellar spacingL appears, and, for example, w
obtain forKa,a

Ka,a52ieipk sin~pk!
MDcP~h!

lL2G S 2

Vh2 2
cotu

h D .

~A7!

Note that in the general case the scaling with respect to
physical parameters would remain the same; however, a
tional coefficients depending on the anglesua andub and the
liquidus slopesma andmb would appear.

For the matrixU, we will just state DL’s results; for more
details, see@22#. The calculation is straightforward but te
dious because we have to treat the interlamellar diffus
This brings in various sums over the Fourier modes of
steady-state expansion, Eq.~12!. We define

Da5B01u`2ua , ~A8!

Db5ub2B02u` , ~A9!

R1~h!5 (
n51

`
sin~2phn!

~pn!2 , ~A10!

R2~h!5 (
n51

`
2 sin2~phn!

~pn!2 , ~A11!

rn~k!5A4p2~n1k!21Pe22Pe, ~A12!
t
to

he
o
to
,

ex

ly
d

e
di-

n.
e

S1~k,h!5 (
n52`

`
sin2@ph~n1k!#

p2~n1k!2rn~k!
, ~A13!

S2~k,h!5 (
n52`

`

e2 ip(n1k)

3
sin@ph~n1k!#sin@p~12h!~n1k!#

p2~n1k!2rn~k!
,

~A14!

S3~k,h!54 (
m52`

`
sin@ph~m1k!#

p~m1k!rm~k!

3 (
n52`;Þ0

` unu
n

sin~phn!eip(n2m2k)/2

3
sin@p~n2m2k!/2#

p~n2m2k!
, ~A15!

S4~k,h!5 (
n52`

`

eiph(n1k)
sin@ph~n1k!#

p~n1k!rn~k!
. ~A16!

Using these quantities, the matrix elements ofU are

Ua,a5
1

l S VU1
a~k,h!1U2

a~k,h!

1
2ieipk

V
sin~pk!U3~k,h! D , ~A17!

Ub,b5
21

l S VU1
b~k,h!1U2

b~k,h!

1
2ieipk

V
sin~pk!U3~k,12h! D , ~A18!

Ua,b5Ua,a* , ~A19!

Ub,a5eiklUb,b* , ~A20!

with

U1
a~k,h!5

1

h
@DaS1~k,h!2DbS2* ~k,h!#, ~A21!

U1
b~k,h!5

1

12h
@DbS1~k,12h!2DaS2* ~k,12h!#,

~A22!

U2
a~k,h!52B01

1

h
@S3* ~k,h!2R2~h!#, ~A23!

U2
b~k,h!5B01

1

~12h!
@S3* ~k,12h!2R2~12h!#,

~A24!

U3~k,h!5
1

h
@2P~h!/h2R1~h!22S4* ~k,h!#.

~A25!
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APPENDIX B: LIMIT OF THE DL SUMS FOR k˜0

For the detailed study of the symmetric phase diagram
eutectic composition, we need to know the leading or
behavior of the functionsU1

a , U2
a , and U3, for k→0. To

this end, we have to expand the sumsSn in k and resum the
resulting terms. We will systematically neglect terms of re
tive magnitude Pe, as was already done in DL’s calculati
leading to the results of the preceding appendix.

We have to single out terms containing the functi
r0(k) in the denominator, because these terms will be s
gular in the limitk→0. To see this, note that we have

r0~k!5H 2p2k2/Pe1O~k4! for 2pk!Pe,

2puku for 2pk@Pe.
~B1!

We will be interested in a regime where the wavelength
the perturbation is larger than the lamellar spacing, but m
smaller than the diffusion length; hence the latter limit a
plies.

Similarly, the functionr̃0(k) will become small whenk
tends to 0:

r̃0~k!5H r PekE12p2k2/Pe1O~k4!, 2pk!Pe,

2puku, 2pk@Pe.
~B2!

Hence the terms proportional tor̃0
21 in the impurity contri-

butions have to be considered separately.
ExpandingS1(k,h) andS2(k,h), we obtain

S1~k,h!5

h22
1

3
h4p2k2

r0~k!
1P~h!1@h2R3~h!23hR4~h!

16R5~h!#p2k21O~k4/r0!1O~k4!, ~B3!

S2~k,h!5H 12 ipk2
1

2 F11
1

3
„h21~12h!2

…Gp2k2J
3

h~12h!

r0~k!
2~12 ipk2p2k2!P~h!

1@h~12h!R3~h!13~h21/2!R4~h!

26R5~h!#p2k21O~k4/r0!1O~k4!, ~B4!

with

R3~h!5 (
n51

`
cos 2phn

~pn!3 , ~B5!

R4~h!5 (
n51

`
sin 2phn

~pn!4 , ~B6!

R5~h!5 (
n51

`
sin2phn

~pn!5 . ~B7!

The expansions for the impurity sumsS̃1(k,h) andS̃2(k,h)
are obtained by replacingr0(k) by r̃0(k) in the above ex-
pressions.
at
r

-
s

-

f
h
-

With the help of these expressions and the definition
U1

a , we find forh51/2 andDa5Db51/2,

Re@e2 ipk/2U1
a~k,1/2!#52P~1/2!1@12R5~1/2!

2 3
4 P~1/2!#p2k21O~k4!.

~B8!

Rather remarkably, all the singular terms cancel out. A co
parison with direct numerical summation shows that the lim
behavior is correct and that the neglected terms sum up
correction that does not exceedP(1/2), even for large values
of k.

For the impurities, we need the expression

S̃1~k,1/2!cos
pk

2
1Re@e2 ipk/2S̃2* ~k,1/2!#

5
125p2k2/24

2r̃0~k!
1

1

2
@P~1/2!1R3~1/2!#p2k2

1O~k4/ r̃0!1O~k4!. ~B9!

We will simplify our task for the functionU2
a , which

contains the most difficult sumS3 ~k,h!, by directly expand-
ing the producteipk/2S3 ~k,1/2!. Using B050 for the sym-
metric phase diagram at eutectic composition, we obtain

Re~eipk/2U2
a!5R0k2/21O~k4!, ~B10!

with

R052p2F3R6~1/2!2
1

6
R2~1/2!2R7~1/2!G

'0.4965, ~B11!

R6~h!5 (
n51

`
2 sin~phn!

~pn!4 , ~B12!

R7~h!5 (
m51

`
2 sin~phm!

~pm!2 (
n52`;Þ0;Þm

` unu
n

sin~phn!

3
cos2@p~n2m!/2#

p2~n2m!2 . ~B13!

Comparison to direct summation shows that the expres
~B10! is accurate to within 5% over the whole range ofk.

Finally, to expressU3, we need the expansion

S4~k,h!5
h1 iph2k

r0~k!
2

2p2h3k21 ip3h4k3

3r0~k!
1R1~h!/2

12p i @P~h!2hR1~h!#k1@6R4~h!28hR3~h!

2h2R1~h!#p2k2/41O~k3!. ~B14!

For Eq.~74!, we need

2 sin~pk!Re@ ieipk/2U3~k,1/2!#58p2P~h!k21O~k!4.
~B15!
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Collecting all these results, we can finally write down t
complete expressions for the coefficientsa(k), b(k), and
c(k) of Eq. ~75! up to orderk2:

a~k!52P~1/2!1@12R5~1/2!2 3
4 P~1/2!#p2k2

1wrH 125p2k2/24

r̃0~k!
1@P~1/2!1R3~1/2!#p2k2J

~B16!

b~k!5~wr2g/2!~12p2k2/8!2S 2p2P~1/2!cotu

L2 1
R0

2 Dk2

22w Per 2kEH 125p2k2/24

r̃0~k!

1@P~1/2!1R3~1/2!#p2k2J , ~B17!

c~k!58p2P~1/2!S 12
1

L2Dk2. ~B18!

To obtain the expressions given by Eqs.~76!, we remark that
for small k we can neglect most of the terms listed abo
We have to be careful, however, to keep track of all phys
effects. For example, formally the leading order term ina(k)
is of orderk21 if we user̃0(k)52puku. But this term comes
with a prefactorw, proportional to the impurity concentra
tion, whereas the leading order term in the expansion ofU1

a ,
arising from the eutectic diffusion field, is independent ofw.
Hence for the approximation to be valid for arbitraryw, we
need to keep both terms leading to Eq.~76a! for a(k). Simi-
larly, in b(k), we need to keep the dominant terms foreach
physical effect, even if their order is higher than other ter
we may neglect. In particular, we must keep the capill
term that is of orderk2 and has a prefactor of order unity
Let us show that, at the onset of instability, we can inde
neglect other terms of orderk andk2. Keep in mind that we
are interested in a regime wherek is small, but nottoo small;
a plausible estimate isk'0.01. First, there is the correctio
2p2k2(wr2g/2)/8 to the constitutional supercooling crite
rion, of order k2. But as wr2g/2 is very small near the
onset, this term is actually much smaller than the capill
term. Next, there are terms of ordersk andk2 arising from
the impurity contribution. But all of these come with a pre
E

.
l

s
y

d

y

actor ofw PekE ; as bothw and Pe are small quantities an
kE,1, it seems justified to neglect them. For example,
w50.1, Pe50.01, andk50.01, the largest neglected term
of orderw Pek;1025, whereas the capillary term is of orde
k2;1024. Hence, Eq.~76b! for b(k) seems well justified at
the onset of instability.

APPENDIX C: EFFECTIVE SURFACE TENSION

We will give here an expression for the Gibbs-Thoms
constant of a lamellar eutectic interfaceGE that describes the
shift of the average interface temperature when the comp
ite interface is curved on a scale much larger than the lam
lar spacing. This analysis is necessary because, in a com
ite material, the interface with the weaker surface tens
will absorb more of the curvature, leading to an effecti
surface tension, that depends on the volume fraction. N
that the expression derived here is valid in thermodyna
equilibrium and contains only the ‘‘geometric part’’ of th
effective Gibbs-Thomson constantGeff for a movingeutectic
front, in which the stabilizing effect of the interlamellar di
fusion has to be included.

Consider a lamellar interface that is curved such that
ab solid-solid interfaces on the two sides of a lamella p
make a small anglef. Suppose that theba interface between
them is turned by an anglef1. The corrections of the curva
ture with respect to the planar front values are then given
~using the fact thatf'l/R for large radii of curvatureR)

dKa5
cosua

hl
f1 and dKb5

cosub

~12h!l
~f2f1!.

~C1!

As the average temperature of neighboring lamellae sho
be the same, we must have

dKaGa5dKbGb . ~C2!

From this condition, we can determine the unknown an
f1. Finally, we obtain the undercooling of the interface a

DT5GEK ~C3!

with

GE5
GaGb cosua cosub

~12h!Ga cosua1hGb cosub
. ~C4!
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